www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Quantization Condition
Quantization Condition < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quantization Condition: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 00:53 So 11.12.2011
Autor: qsxqsx

Guten Abend,

Ich frage mich woher diese Gleichung kommt?!

[mm] \integral_{}^{}{\vec{p}dr} [/mm] = [mm] (n+\bruch{1}{2})*h [/mm]

,wobei h das Planksche Wirkungsquantum bezeichnet und das Integral ein geschlossenes Ringintegral darstellt. Dazu steht: "Quantization condition for a free electron orbit".
Der Term rechts kommt mir ja sehr bekannt vor aus der Energie von Phononen mit (n + [mm] \bruch{1}{2})*h*f, [/mm] mit der Frequenz f.

Vielleicht hilft es noch, dass [mm] \integral_{}^{}{\vec{p}dr} [/mm] = [mm] \integral_{}^{}{\bruch{h}{2*\pi}*\vec{k}*dr} [/mm] + [mm] \bruch{q}{c}*\integral_{}^{}{\vec{A} dr} [/mm]
, wobei k der Vektor im k-Raum ist, A das Vektorpotential, q die Ladung und c die Lichtgeschwindigkeit.

Wäre super falls mir jemand was dazu sagen könnte.

Grüsse

        
Bezug
Quantization Condition: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:20 Mo 19.12.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Quantization Condition: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:28 Mo 19.12.2011
Autor: JonasMe

Hi,

Deine Gleichung,
$ [mm] \integral_{}^{}{\vec{p}dr} [/mm] =  [mm] (n+\bruch{1}{2})\cdot{}h$, [/mm]
ist die "Bohr-Sommerfeld Quantisierung". Sie wird/wurde in der Atomphysik benutzt, um die Orbitale der Elektronen zu quantisieren. Wie es damals interpretiert wurde weiss ich nicht. Wie ich es interpretieren würde: Der Phasenraum (linke Seite Deiner Gleichung) ist in Einheiten des Drehimpulses (rechte Seite der Gleichung) quantisiert. Diese Interpretation stammt von Bose (Herleitung des Planck'schen Strahlungsgestzes durch eben diesen Ansatz: "Quantisierung des Phasenraumes in Einheiten von $2 [mm] \pi \hbar$"). [/mm]

Deine zweite Gleichung ist das gleiche, nur dass Du den "kinetischen Impuls" der Quantenmechanik benutzt -- falls ein Vektorpotential vorhanden ist, dann benutzt man den "kinetischen Impuls" und nicht den "kanonischen Impuls". Eine schöne Erklärung dazu findest Du im Buch [Sakurai: "Modern Quantum mechanics"].

Gruß,
  Jonas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de