www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Quasikonvex
Quasikonvex < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quasikonvex: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:31 Do 19.04.2012
Autor: kiwibox

Hallo,

ich habe gerade irgendwie ein Brett vorm Kopf. Ich glaube nicht, dass die Aufgabe allzu schwer ist, allerdings stecke ich da fest.

Sei X [mm] \subset \IR [/mm] und M [mm] \not= \emptyset, [/mm] M [mm] \subset [/mm] X. Zeigen Sie das F: M [mm] \to \IR [/mm] quasikonvex [mm] \gdw [/mm] f(yx+(1-t)y) [mm] \le [/mm] max {f(x),f(y)} für alle t [mm] \in [/mm] [0,1]

Ich komme weder bei der Hin- noch Rückrichtung auf ein für mich befriedigendes Ergebnis:

Meine bisherigen Überlegungen: (da der Beweis überhaupt funktioniert, nehme ich stillschweigend an, dass M konvex ist)
Wir haben in der Vorlesung definiert, f quasikonvex [mm] \gdw M_{\alpha}={x \in M: f(x) \le \alpha} [/mm] konvex
Meine Menge ist konvex, wenn gilt: yx+(1-t)y) [mm] \in [/mm] M für t [mm] \in [/mm] [0,1], x,y [mm] \in [/mm] M

Also kann ich hier schon mal sagen: für x,y [mm] \in M_{\alpha} [/mm] gilt yx+(1-t)y) [mm] \in M_{\alpha} [/mm]
So hier tritt aber mein Problem auf, ich muss ja zeigen: f(yx+(1-t)y) [mm] \le [/mm] max {f(x),f(y)}. Aber wie zeige ich das? Ich kann ja nicht einfach mein f auseinander ziehen (sonst wäre das ja klar), es ist ja nicht linear. Welchen Tipp könntet ihr mir hier für geben?

Bei der Rückrichtung stehe ich komplett auf den Schlauch. Wie kann ich denn aus f(yx+(1-t)y) [mm] \le [/mm] max {f(x),f(y)} folgern, dass mein [mm] M_{\alpha} [/mm] konvex ist?

Ich bin für wirklich jeden Tipp dankbar, ich bin schon seit Stunden an dieser Aufgabe am verzweifeln....

Liebe Grüße, Kiwibox

        
Bezug
Quasikonvex: Antwort
Status: (Antwort) fertig Status 
Datum: 08:36 Fr 20.04.2012
Autor: fred97


> Hallo,
>  
> ich habe gerade irgendwie ein Brett vorm Kopf. Ich glaube
> nicht, dass die Aufgabe allzu schwer ist, allerdings stecke
> ich da fest.
>  
> Sei X [mm]\subset \IR[/mm] und M [mm]\not= \emptyset,[/mm] M [mm]\subset[/mm] X.
> Zeigen Sie das F: M [mm]\to \IR[/mm] quasikonvex [mm]\gdw[/mm] f(yx+(1-t)y)
> [mm]\le[/mm] max {f(x),f(y)} für alle t [mm]\in[/mm] [0,1]

Das soll wohl lauten:

f(tx+(1-t)y)  [mm]\le[/mm] max {f(x),f(y)} für alle t [mm]\in[/mm] [0,1]


>  
> Ich komme weder bei der Hin- noch Rückrichtung auf ein
> für mich befriedigendes Ergebnis:
>  
> Meine bisherigen Überlegungen: (da der Beweis überhaupt
> funktioniert, nehme ich stillschweigend an, dass M konvex
> ist)
>  Wir haben in der Vorlesung definiert, f quasikonvex [mm]\gdw M_{\alpha}={x \in M: f(x) \le \alpha}[/mm]
> konvex
>  Meine Menge ist konvex, wenn gilt: yx+(1-t)y) [mm]\in[/mm] M für t
> [mm]\in[/mm] [0,1], x,y [mm]\in[/mm] M
>  
> Also kann ich hier schon mal sagen: für x,y [mm]\in M_{\alpha}[/mm]
> gilt yx+(1-t)y) [mm]\in M_{\alpha}[/mm]
>  So hier tritt aber mein
> Problem auf, ich muss ja zeigen: f(yx+(1-t)y) [mm]\le[/mm] max
> {f(x),f(y)}. Aber wie zeige ich das? Ich kann ja nicht
> einfach mein f auseinander ziehen (sonst wäre das ja
> klar), es ist ja nicht linear. Welchen Tipp könntet ihr
> mir hier für geben?
>  
> Bei der Rückrichtung stehe ich komplett auf den Schlauch.
> Wie kann ich denn aus f(yx+(1-t)y) [mm]\le[/mm] max {f(x),f(y)}
> folgern, dass mein [mm]M_{\alpha}[/mm] konvex ist?
>
> Ich bin für wirklich jeden Tipp dankbar, ich bin schon
> seit Stunden an dieser Aufgabe am verzweifeln....
>  
> Liebe Grüße, Kiwibox

1. Sei f quasikonvex. Nimm x,y [mm] \in [/mm] M her. Es sei o.B.d.A. f(x) [mm] \le [/mm] f(y).

Setze [mm] \alpha:=f(y). [/mm] Dann sind x,y [mm] \in M_{\alpha} [/mm]

Jetzt nutze die Konvexität von  [mm] M_{\alpha}, [/mm] um

             f(tx+(1-t)y)  [mm]\le[/mm] max {f(x),f(y)} für alle t [mm]\in[/mm] [0,1]


zu bekommen.

2. Es gelte

(*)   f(tx+(1-t)y)  [mm]\le[/mm] max {f(x),f(y)} für alle t [mm]\in[/mm] [0,1] und alle x,y [mm] \in [/mm] M.

Sei [mm] \alpha [/mm] vorgegeben. Zu zeigen:  [mm] M_{\alpha} [/mm] ist konvex. Dazu nimm x,y [mm] \in M_{\alpha} [/mm] her. Dann sind f(x),f(y) [mm] \le \alpha. [/mm] Zeige nun mit (*), dass auch

          tx+(1-t)y [mm] \in M_{\alpha} [/mm]

ist , für t [mm] \in [/mm] [0,1]

FRED



Bezug
                
Bezug
Quasikonvex: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:32 Sa 21.04.2012
Autor: kiwibox

danke...:-) ich hab einfach zu doof gedacht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de