www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Quaternionengruppe
Quaternionengruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quaternionengruppe: Ordnung; Isomorphie
Status: (Frage) beantwortet Status 
Datum: 20:09 Do 18.11.2010
Autor: dennis2

Aufgabe
Es sei Q die von [mm] A=\pmat{0 & 1 \\ -1 & 0} [/mm] und [mm] B=\pmat{0 & i \\ i & 0} [/mm] erzeugte Untergruppe in [mm] Gl_2(\IC), [/mm] die Quaternionengruppe . Zeigen Sie:

a) Q ist eine nicht abelsche Gruppe der Ordnung 8.
b) Q enthält genau ein Element der Ordnung 2.
c) Q ist nicht isomorph zu [mm] D_8. [/mm]

Meine Frage bezieht sich gar nicht so sehr darauf, wie man a), b) und c) löst. Denn ich habe eine grobe Vorstellung, was man zeigen soll.

Meine Frage ist vielmehr:

Was sind denn die Elemente der Quaternionengruppe bzw. was bedeutet: "die von A und B erzeugte Untergruppe"?



        
Bezug
Quaternionengruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:24 Do 18.11.2010
Autor: Lippel


> Es sei Q die von [mm]A=\pmat{0 & 1 \\ -1 & 0}[/mm] und [mm]B=\pmat{0 & i \\ i & 0}[/mm]
> erzeugte Untergruppe in [mm]Gl_2(\IC),[/mm] die Quaternionengruppe .
> Zeigen Sie:
>  
> a) Q ist eine nicht abelsche Gruppe der Ordnung 8.
>  b) Q enthält genau ein Element der Ordnung 2.
>  c) Q ist nicht isomorph zu [mm]D_8.[/mm]
>  Meine Frage bezieht sich gar nicht so sehr darauf, wie man
> a), b) und c) löst. Denn ich habe eine grobe Vorstellung,
> was man zeigen soll.
>  
> Meine Frage ist vielmehr:
>  
> Was sind denn die Elemente der Quaternionengruppe bzw. was
> bedeutet: "die von A und B erzeugte Untergruppe"?
>  
>  

Hallo,

die von A und B erzeugte Untergruppe ist die kleinste Untergruppe, die A und B enthält. Es ist diejenige Menge von Elementen, die du durch Verknüpfung von A und B miteinander bzw. mit sich selbst erhälst. Also sind in der betrachteten UG die Elemente [mm] $A^2, [/mm] AB, BA, [mm] B^2,...$ [/mm] enthalten. Du kannst die Elemente bestimmen, indem du so lange Elemente verknüpfst und das Ergebnis zur Menge hinzunimmst, bis die Menge abgeschlossen ist unter der betrachteten Gruppenverknüpfung.

Viele Grüße, Lippel

Bezug
                
Bezug
Quaternionengruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:26 Do 18.11.2010
Autor: dennis2

Danke!

Genau das werde ich tun und mein Ergebnis dann posten.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de