www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Quotientenkörper
Quotientenkörper < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quotientenkörper: Ansatz
Status: (Frage) beantwortet Status 
Datum: 22:43 Di 25.01.2005
Autor: Phlipper

Man zeige, daß der Quotientenkörper des Polynomringes R[x] uber einem Integritätsbereich R isomorph zum K¨orper der rationalen Funktionen über dem Quotientenkörper von R ist
Weiß absolut nicht wie ich ansetzten soll. Wäre über jeden kleinen Tipp dankbar.

        
Bezug
Quotientenkörper: Kleiner Tipp
Status: (Antwort) fertig Status 
Datum: 22:52 Di 25.01.2005
Autor: Gnometech

Grüße!

Also schön, ein kleiner Tipp: ich bezeichne den Quotientenkörper von $R$ mal mit $K$.

Sei also nun ein Element $h$ aus dem Körper der rationalen Funktionen über $K$ gegeben. Eine rationale Funktion ist Quotient zweier Polynome, also gibt es $f,g [mm] \in [/mm] K[X]$ mit $h = [mm] \frac{f}{g}$. [/mm]

Durch Erweitern mit geeigneten Elementen kann man nun erreichen, dass $f$ und $g$ nur Koeffizienten in $R$ haben. Stell' Dir z.B. vor Du hast den Quotienten zweier Polynome mit Koeffizienten in [mm] $\IQ$ [/mm] gegeben... dann kannst Du den Bruch so erweitern, dass beide Polynome nur noch Koeffizienten in [mm] $\IZ$ [/mm] besitzen.

Das liefert Dir eine Abbildung von $K(X) [mm] \to [/mm] Quot(R[X])$. Wohldefiniertheit dürfte relativ klar sein, jetzt fehlt noch Injektivität und Surjektivität (das es ein Homomorphismus von Körpern ist liegt nahe, oder...?)

Viel Erfolg!

Lars

Bezug
                
Bezug
Quotientenkörper: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 23:38 Di 25.01.2005
Autor: Phlipper

Diese Abbildung beschreibt also diese Veränderung der Koeffizienten der Polynome. Was muss ich jetzt noch zeigen ? Injektivität und Surjektivität ?
Was ist damit denn genau gemeint ? Danke für die Veranschaulichung durch das Beispiel.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de