www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Quotientenregel oder Produktregel???
Quotientenregel oder Produktregel??? < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quotientenregel oder Produktregel???: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:04 Mi 18.02.2004
Autor: MichaK

Hallo alle zusammen,

wir hab grad mit den Quotientenregel und der Produktregel angefangen und ich muss ehrlich sagen ich kapier gar nichts mehr!!
Nun auf jeden Fall haben wir ein paar HA aufbekommen wo ich echt vor einer Wand stehe. Also:

f(x) = (1+x2)2

Ich weiß echt nicht weiter...
wäre nett wenn ihr mir weiter helfen könntet.

MfG Michael

        
Bezug
Quotientenregel oder Produktregel???: Antwort
Status: (Antwort) fertig Status 
Datum: 14:35 Mi 18.02.2004
Autor: Marc

Hallo Micha,

willkommen im MatheRaum :-)!

Fangen wir zunächst mit der Produktregel an.

Die Produktregel lautet: Eine Funktion $f$, die sich als Produkt zweier Funktionen $g$ und $h$ schreiben läßt ($f=g*h$) wird mit folgender Regel abgeleitet:
$$f'=g'*h+g*h'$$
(Das "naive" faktorweise Ableiten ist also im allgemeinen falsch: [mm] $f'\neq [/mm] g'*h'$)

Beispiel:
[mm] $f(x)=(x^2+1)*x^3$ [/mm]
Hier muß man zunächst erkennen, dass sich $f$ als das Produkt der beiden Funktionen [mm] $g(x)=x^2+1$ [/mm] und [mm] $h(x)=x^3$ [/mm] darstellen läßt: [mm] $f(x)=g(x)*h(x)=(x^2+1)*x^3$. [/mm]

In einer Nebenrechnung ermittle ich die Ableitungen von $g$ und $h$, weil sie in der Produktregel verwendet werden:
$g'(x)=2x$ und [mm] $h'(x)=3x^2$. [/mm]
Diese einzelnen Ableitungen dürften klar sein, falls nicht, frage bitte nach.
Jetzt können wir die Produktregel anwenden:
[mm] $$f'(x)=g'(x)*h(x)+g(x)*h'(x)=\underbrace{2x}_{=g'(x)}*\underbrace{x^3}_{=h(x)}+(\underbrace{x^2+1}_{=g(x)})*\underbrace{3x^2}_{=h'(x)}$$ [/mm]
Das könnte man jetzt noch vereinfachen bzw. zusammenfassen, wenn man Lust hätte.

Nun steht in deinem Beispiel [mm] $f(x)=(1+x^2)^2$, [/mm] $f$ ist also bei oberflächlicher Betrachtung gar kein Produkt (und schon gar kein Quotient).
Da aber ein Potenz (mit natürlichem Exponenten) eine abkürzende Schreibweise für ein mehrmalige Multiplikation eines Terms mit sich selbst ist, ist $f$ nichts anderes als [mm] $f(x)=(1+x^2)*(1+x^2)$ [/mm] und wir können als Faktoren setzen: [mm] $g(x)=1+x^2$ [/mm] und [mm] $h(x)=1+x^2$. [/mm]

Kommst du nun mit deiner Aufgabe zurecht? Falls nicht, melde dich bitte, übrigens auch dann, wenn du dein Ergebnis von uns kontrolliert haben willst.

Zum Schluß erwähne ich noch die Quotientenregel; sie lautet für eine Funktion $f$, die sich als Quotient zweier Funktionen $g$ und $h$ schreiben läßt (also [mm] $f=\frac{g}{h}$): [/mm]

[mm] $$f'=\bruch{g'*h-g*h'}{h^2}$$. [/mm]

Probiere auch hier ein paar Übungsaufgaben zur Quotientenregel, wir kontrollieren sie gerne bzw. helfen bei Problemen.

Viel Erfolg,
Marc.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de