www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Quotientenvektorraum
Quotientenvektorraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quotientenvektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:12 Mo 21.11.2011
Autor: Balodil

Aufgabe
Sei V:= [mm] Abb(\IR,\IR) [/mm] und U:= {f [mm] \in [/mm] V: f(0) = 0}

a) Zeige U ist ein Untervektorraum von V

b)
Betrachte den Quotientenvektorraum V/U. Zeige, dass für [f], [g] [mm] \in [/mm] V/U gilt:
[f] = [g] [mm] \gdw [/mm] f(0) = g(0)

c)
Betrachte die Abbildung
[mm] \alpha [/mm] : V/U [mm] \to [/mm] R
   [f] [mm] \mapsto [/mm] f(0).
Zeige: [mm] \alpha [/mm] ist eine wohldefinierte, bijektive Abbildung.

Schönen guten abend!

Die a habe ich gelöst.
Allerdings stehe ich jetzt vor der b)
Ein Quotientenvektorraum ist die Menge alle Äquivalenzklassen.
und [f] ist eine Äquivalenzklasse mit [f] = f + U = {f + u | u [mm] \in [/mm] U}

Und um die Aquivalenz zu zeigen muss ich wie immer die Hin und RÜckrichtung zeigen.
Wenn ich mit der Hinrichtung anfangen habe ich gegeben:
[f] = f + U = {f + u | u [mm] \in [/mm] U}
[g] = g + U = {g + u | u [mm] \in [/mm] U}
Damit [f] = [g] muss f = g
folgt daraus schon das f(0) = g(0) ???

Zur Rückrichtung
Da weiß ich nicht so recht wie ich mit meiner Vorraussetzung f(0) = g(0) umgehen sollen bzw. was sie mir liefert.


Für die teilaufgabe c) habe ich gar keinen Ansatz ich kann mir darunter nichts so richtig vorstellen und weiß dementsprechend nicht wie ich da die surjektivität und injektivität zeigen soll.

Vielen Dank!
lg Balodil



        
Bezug
Quotientenvektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 06:51 Di 22.11.2011
Autor: fred97

Schau mal hier:

https://matheraum.de/read?t=839969

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de