www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - RSA-Beispiel mit kleinen Zahle
RSA-Beispiel mit kleinen Zahle < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

RSA-Beispiel mit kleinen Zahle: Modulare Exponentiation
Status: (Frage) beantwortet Status 
Datum: 23:04 So 02.03.2014
Autor: moritzrbk

Aufgabe
Hi, ich habe eine Frage zu einem einführenden Zahlenbeispiel zur RSA-Verschlüsselung.  
Warum wird  für p:=7 q:=13 und e:=25 alles auf sich selbst abgebildet, also: Warum ist  a^25 mod 91 = a mod 91 ?

Es geht also um das multiplikative Inverse einer Zahl e im Ring
[mm] ({x^z|z aus Z}, [/mm] *(p,q):=x^(p*q))

Wir haben hier also ϕ(N)=72 und e=25.
Es gilt für alle a:
a^25 mod 91 = a mod 91

Wählt man e=35, so ist (a^35)^35 mod 91 = a mod 91
Der öffentliche "Schlüssel" wäre also gleich dem privaten.

Klar ist, dass RSA auf dem Faktorisierungsproblem beruht und für so kleine Zahlen keinerlei Sinn ergibt.
Man wird bei riesigen Zahlen auch lieber direkt eine Primzahl e wählen, als den ggT(ϕ(N), e?) zu berechnen.
Trotzdem rein aus Interesse: Warum ergibt sich für e=25 oder e=35 in diesem speziellen Ring mod 91=7*13 dieses Verhalten?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
RSA-Beispiel mit kleinen Zahle: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:28 So 02.03.2014
Autor: SuRRioR

In der tatsächlichen anwendung wird in fast immer [mm] $e=2^{16}+1$ [/mm] gewählt. [mm] $2^{16}+1$ [/mm] ist eine Primzahl womit $ggT(p(N), e)=1$ sichergestellt ist (ist $ggT(p(N), [mm] e)\not=1$ [/mm] gibt es kein multiplikatives Inverses).
Warum bei kleinen Zahlen der öffentliche Schlüssel gleich dem privaten ist und der ciphertext in den meissten Fällen dem plaintext entspricht kann ich dir leider nicht sagen :/

Bezug
                
Bezug
RSA-Beispiel mit kleinen Zahle: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:32 Mo 03.03.2014
Autor: MaslanyFanclub

Hallo SuRRioR,

>
>  [mm]2^{16}+1[/mm] ist eine Primzahl womit
> [mm]ggT(p(N), e)=1[/mm] sichergestellt ist (ist [mm]ggT(p(N), > e)\not=1[/mm]

Das ist falsch. Es gibt unendlich viele Primzahl p, mit [mm] $2^{16}+1|p-1$ [/mm] nach dem Dirichletschen Primzahlsatz https://de.wikipedia.org/wiki/Dirichletscher_Primzahlsatz .
Die Wahl von e als Primzahl verringert allerdings die Wahrscheinlichkeit für [mm] $ggT(\varphi(N),e) \neq [/mm] 1$, ebenso wie die Wahl größerer e.




Bezug
        
Bezug
RSA-Beispiel mit kleinen Zahle: Antwort
Status: (Antwort) fertig Status 
Datum: 00:18 Mo 03.03.2014
Autor: MaslanyFanclub

Hallo,

das Beispiel ist *hust*extrem unglücklich*hust* gewählt. (außer es ist die Absicht die Unzulänglichkeiten von [mm] $\varphi$ [/mm] aufzuzeigen)

Es gilt [mm] $a^{12}\equiv [/mm] 1 [mm] \mod 7\cdot [/mm] 13$ für alle $a [mm] \in (\mathbb [/mm] Z/91 [mm] \mathbb Z)^\times$, [/mm]
siehe https://de.wikipedia.org/wiki/Carmichael-Funktion
Da N quadratfrei gilt sogar (chin. Restsatz):
$a [mm] \equiv a^{k\cdot 12 +1} \mod [/mm] N$ für alle $a [mm] \in \mathbb [/mm] N$,$ [mm] 1\leq [/mm]  k [mm] \in \mathbb [/mm] N$

Für e ist es nicht unbedingt wichtig ob es prim ist;ferner ist i.d.R keine Faktorzerlegung von [mm] $\varphi(pq)$bekant; [/mm] wichtiger ist, dass man schnell mit e multiplizieren kann, also e sollte insbesondere fast nur aus 0 in der Binärdarstellung bestehen. Die Berechnung eines ggT geht sehr schnell.

Bezug
                
Bezug
RSA-Beispiel mit kleinen Zahle: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:36 Mo 03.03.2014
Autor: moritzrbk

Es war, zugegeben, nicht ein Beispiel von einem Prof o.ä., sondern ich hatte nur mit den Werten herumprobiert und bin darauf gestoßen. Habe aber keine Ahnung von Zahlen- und Gruppentheorie.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de