www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - R[0,2\pi] nicht vollständig
R[0,2\pi] nicht vollständig < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

R[0,2\pi] nicht vollständig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:46 Do 20.05.2010
Autor: GnaGna

Aufgabe
Es gibt kein  f in [mm] R[0,2\pi] [/mm] mit [mm] ||f_n [/mm] - [mm] f||_2 [/mm] ->0, somit ist [mm] (R[0,2\pi],||.||_2) [/mm] nicht vollständig. (Wobei  [mm] (f_n) [/mm] in [mm] C[0,2\pi], f_n [/mm] (x) = min{ n, [mm] x^{-1/3} [/mm] } )

Ich verstehe nicht, ganz, inwiefern es keine einzige solche Funktion geben sollte.
Ich setze nun einfach einmal die Definition ein:
[mm] (\integral_{0}^{2\pi}{|f_n - f|^{2} dx} )^{1/2} [/mm] =
[mm] (\integral_{0}^{2\pi}{|min( n, x^{-1/3} ) - f|^{2} dx} )^{1/2} [/mm]
Wähle ich nun n genügend groß, z.b. 100, so bekomme ich immer den Wert [mm] x^{-1/3} [/mm] heraus. Und für diesen Wert gibt es eine Regelfunktion, da er eine stetig Funktion von x ist. Entsprechend würde für das gesamte Integral 0 herauskommen, was aber widersprüchlich zu dem wäre, was es zu beweisen gilt.
Ich komme einfach nicht auf meinen Denkfehler, vielleicht hat jemand von euch eine Idee?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
R[0,2\pi] nicht vollständig: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 Do 20.05.2010
Autor: SEcki


> Wähle ich nun n genügend groß, z.b. 100, so bekomme ich
> immer den Wert [mm]x^{-1/3}[/mm] heraus.

ein, schau dir das ganze mal um die 0 herum an! Da unterschiedet sich die Funktion schon stark von [m]x^{-1/3}[/m].

> Und für diesen Wert gibt
> es eine Regelfunktion, da er eine stetig Funktion von x
> ist. Entsprechend würde für das gesamte Integral 0
> herauskommen, was aber widersprüchlich zu dem wäre, was
> es zu beweisen gilt.

Was ist denn dein f?

> Ich komme einfach nicht auf meinen Denkfehler, vielleicht
> hat jemand von euch eine Idee?

Was soll dein f sein?

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de