www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - R \cap K
R \cap K < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

R \cap K: Kariert oder leniert
Status: (Frage) beantwortet Status 
Datum: 09:35 Fr 12.09.2014
Autor: b.reis

Aufgabe
Ein Stapel von 86 Schulheften wurde untersucht nach kariert (K) und mit Rand (R)

(K [mm] \cap [/mm] R) =33 (R [mm] \cap \overline{K})= [/mm] 19 R= 52

[mm] (\overline{R} \cup [/mm] K )=22

K=55  Omega = 86

Hallo

Also ich bin beim Additionssatz

[mm] P(A\cupB)=P(A)+P(B)-(A \cap [/mm] B)

Aber wie berechne ich (A [mm] \cap [/mm] B)

Ich könnte es bis jetzt immer aus der Aufgabenstellung herauslesen. Aber was ist wenn ich nur P(A) und P(B) gegebenen hab ?


M.f.G.

benni

        
Bezug
R \cap K: Antwort
Status: (Antwort) fertig Status 
Datum: 09:42 Fr 12.09.2014
Autor: fred97


> Ein Stapel von 86 Schulheften wurde untersucht nach kariert
> (K) und mit Rand (R)
>
> (K [mm]\cap[/mm] R) =33 (R [mm]\cap \overline{K})=[/mm] 19 R= 52
>  
> [mm](\overline{R} \cup[/mm] K )=22
>  
> K=55  Omega = 86
>  Hallo
>
> Also ich bin beim Additionssatz
>
> [mm]P(A\cupB)=P(A)+P(B)-(A \cap[/mm] B)

Das soll wohl lauten:

$P(A [mm] \cup [/mm] B)=P(A)+P(B)-P(A [mm] \cap [/mm] B)$


>  
> Aber wie berechne ich (A [mm]\cap[/mm] B)
>  
> Ich könnte es bis jetzt immer aus der Aufgabenstellung
> herauslesen. Aber was ist wenn ich nur P(A) und P(B)
> gegebenen hab ?

Witzig ! Vielleicht spendierst Du mal ein paar Worte über A und B. Was soll denn A sein und was B ???

Oben ist nur von K und R die rede.

FRED

>
>
> M.f.G.
>  
> benni


Bezug
                
Bezug
R \cap K: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:50 Fr 12.09.2014
Autor: b.reis

Hallo


(K [mm] \cap [/mm] R) =33 (R [mm] \cap \overline{K})= [/mm] 19 R= 52

[mm] (\overline{R} \cup [/mm] K )=22

K=55  Omega = 86 </task>

K=A und R=B in  P(A [mm] \cup [/mm] B)=P(A)+P(B)-(A [mm] \cap [/mm] B )

M.f.G.

Benni


Bezug
                        
Bezug
R \cap K: Antwort
Status: (Antwort) fertig Status 
Datum: 10:08 Fr 12.09.2014
Autor: Diophant

Moin,

weißt du: deine Fragen sind wirklich ziemlich kryptisch. Du könntest dir deutlich mehr Mühe beim Abfassen der Fragen geben, das wäre auch in deinem Sinne! So weiß man bspw. bis hierher überhaupt noch nicht, was du eigentlich ausrechnen möchtest. Weshalb schreibst du das nicht dazu??? Man kommt sich da vor wie ein Archäologe...

Ich interpretiere da jetzt mal die Frage herein, dass die Wahrscheinlichkeit gesucht ist, dass ein zufällig herausgegriffenes Heft weder kariert ist noch einen Rand hat. Liege ich mit dieser Vermutung richtig?
(Ich betätige mich hier jetzt also als Archäologe, der verlorene Matheaufgaben wieder ausgräbt)

> Hallo

>
>

> (K [mm]\cap[/mm] R) =33 (R [mm]\cap \overline{K})=[/mm] 19 R= 52

>

> [mm](\overline{R} \cup[/mm] K )=22

>

> K=55 Omega = 86

>

> K=A und R=B in P(A [mm]\cup[/mm] B)=P(A)+P(B)-(A [mm]\cap[/mm] B )

>

Das kann man mit dem Additionssatz berechnen, es ist jedoch umständlich, das ist dir klar? Einfacher ging es ganz simpel über die Vierfeldertafel.

Mit dem Additionssatz hättest du

[mm] P({K}\cup{R})=P(K)+P(R)-P({K}\cap{R}) [/mm]

Sämtliche Werte für die rechte Seite hast du schon. Die linke Seite zu berechnen ist also nicht das Problem. Das Problem ist, dass links nicht die gesuchte Wahrscheinlichkeit steht. Deine Aufgabe ist es nun, den sehr einfachen zusammenhang zischen der gesuchten Wahrscheinlichkeit und der oben berechneten Wahrscheinlichkeit [mm] P({K}\cup{R}) [/mm] herauszufinden.

PS: weshalb diese schlampige Arbeitshaltung? Ein wenig mehr Professionalität, komplett formulierte Aufgaben und einige Worte zu deinem Anliegen, schon wären solche Fragen nach einer Antwort geklärt und du hättest viel mehr davon.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de