www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Radikalerweiterung
Radikalerweiterung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Radikalerweiterung: Erklärung...
Status: (Frage) beantwortet Status 
Datum: 02:31 So 14.11.2010
Autor: antonicwalker

Aufgabe
[mm] Q(\wurzel{2},\wurzel[3]{1+\wurzel{2}})/Q [/mm] ist eine Radikalerweiterung, es ist nämlich
Q [mm] \subset Q(\wurzel{2}) \subset Q(\wurzel[3]{1+\wurzel{2}}), [/mm]
wobei [mm] Q(\wurzel{2})/Q [/mm] eine einfache 2-Radikalerweiterung, und
[mm] Q(\wurzel[3]{1+\wurzel{2}})/ Q(\wurzel{2}) [/mm]
eine einfache 3-Radikalerweiterung ist.

Hallo zusammen,

habe ein Beispiel für Radikalerweiterung gelesen, aber habe nicht ganz versanden. Nach der Definition weiß ich:
[mm] \wurzel{2} \in Q(\wurzel{2}) [/mm] und
( [mm] \wurzel{2} )^{2} \in [/mm] Q
[mm] D.h.:Q(\wurzel{2})/Q [/mm] ist einfache 2-Radikalerweiterung.
Aber wieso ist [mm] Q(\wurzel{2},\wurzel[3]{1+\wurzel{2}})/Q(\wurzel{2}) [/mm] eine einfache 3-Radikalerweiterung??
( [mm] \wurzel{2}+ \wurzel[3]{1+ \wurzel{2}} )^{3} \not\in [/mm]  
[mm] Q(\wurzel{2}) [/mm] oder?!

Kann Jemand mir erklären?! Vielen Dank!!

        
Bezug
Radikalerweiterung: Antwort
Status: (Antwort) fertig Status 
Datum: 02:58 So 14.11.2010
Autor: felixf

moin!

> [mm]Q(\wurzel{2},\wurzel[3]{1+\wurzel{2}})/Q[/mm] ist eine
> Radikalerweiterung, es ist nämlich
>  Q [mm]\subset Q(\wurzel{2}) \subset Q(\wurzel[3]{1+\wurzel{2}}),[/mm]
>  
> wobei [mm]Q(\wurzel{2})/Q[/mm] eine einfache 2-Radikalerweiterung,
> und
>  [mm]Q(\wurzel[3]{1+\wurzel{2}})/ Q(\wurzel{2})[/mm]
>  eine einfache 3-Radikalerweiterung ist.
>
>  Hallo zusammen,
>  
> habe ein Beispiel für Radikalerweiterung gelesen, aber
> habe nicht ganz versanden. Nach der Definition weiß ich:
>  [mm]\wurzel{2} \in Q(\wurzel{2})[/mm] und
> ( [mm]\wurzel{2} )^{2} \in[/mm] Q
>  [mm]D.h.:Q(\wurzel{2})/Q[/mm] ist einfache 2-Radikalerweiterung.
>  Aber wieso ist
> [mm]Q(\wurzel{2},\wurzel[3]{1+\wurzel{2}})/Q(\wurzel{2})[/mm] eine
> einfache 3-Radikalerweiterung??

Mit $K = [mm] \IQ(\sqrt{2})$ [/mm] ist doch [mm] $\IQ(\sqrt{2}, \sqrt[3]{1 + \sqrt{2}}) [/mm] = [mm] K(\sqrt[3]{1 + \sqrt{2}})$, [/mm] d.h. du musst [mm] $\bigl( \sqrt[3]{1 + \sqrt{2}} \bigr)^n \in [/mm] K$ haben fuer passendes $n$ (hier: $n = 3$).

LG Felix


Bezug
                
Bezug
Radikalerweiterung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 03:31 So 14.11.2010
Autor: antonicwalker


> moin!
>  
> > [mm]Q(\wurzel{2},\wurzel[3]{1+\wurzel{2}})/Q[/mm] ist eine
> > Radikalerweiterung, es ist nämlich
>  >  Q [mm]\subset Q(\wurzel{2}) \subset Q(\wurzel[3]{1+\wurzel{2}}),[/mm]
>  
> >  

> > wobei [mm]Q(\wurzel{2})/Q[/mm] eine einfache 2-Radikalerweiterung,
> > und
>  >  [mm]Q(\wurzel[3]{1+\wurzel{2}})/ Q(\wurzel{2})[/mm]
>  >  eine
> einfache 3-Radikalerweiterung ist.
>  >

> >  Hallo zusammen,

>  >  
> > habe ein Beispiel für Radikalerweiterung gelesen, aber
> > habe nicht ganz versanden. Nach der Definition weiß ich:
>  >  [mm]\wurzel{2} \in Q(\wurzel{2})[/mm] und
> > ( [mm]\wurzel{2} )^{2} \in[/mm] Q
>  >  [mm]D.h.:Q(\wurzel{2})/Q[/mm] ist einfache
> 2-Radikalerweiterung.
>  >  Aber wieso ist
> > [mm]Q(\wurzel{2},\wurzel[3]{1+\wurzel{2}})/Q(\wurzel{2})[/mm] eine
> > einfache 3-Radikalerweiterung??
>  
> Mit [mm]K = \IQ(\sqrt{2})[/mm] ist doch [mm]\IQ(\sqrt{2}, \sqrt[3]{1 + \sqrt{2}}) = K(\sqrt[3]{1 + \sqrt{2}})[/mm],
> d.h. du musst [mm]\bigl( \sqrt[3]{1 + \sqrt{2}} \bigr)^n \in K[/mm]
> haben fuer passendes [mm]n[/mm] (hier: [mm]n = 3[/mm]).
>  
> LG Felix
> moin!!

Vielen Dank, dass du erklärt hast!! Aber ich verstehe immer noch nicht so ganz!! D.h. Wenn L/K eine Körpererweiterung ist, muss jedes Element [mm] \alpha \in [/mm] L überprüft werden, ob es ein n [mm] \in \IN [/mm] gibt, so dass
[mm] (\alpha)^{n} \in [/mm] K liegt. So hast du gemeint, oder?! Aber
wieso braucht das [mm] Element(\wurzel[3]{1+\wurzel{2}}) [/mm] nicht zu überprüfen?! [mm] \wurzel[3]{1+\wurzel{2}} [/mm] liegt doch in [mm] Q(\wurzel[3]{1+\wurzel{2}}), [/mm] oder?!
Kannst du noch kurz erklären?!

Vielen Dank!!


Bezug
                        
Bezug
Radikalerweiterung: Antwort
Status: (Antwort) fertig Status 
Datum: 04:33 So 14.11.2010
Autor: felixf

Moin!

>   Vielen Dank, dass du erklärt hast!! Aber ich verstehe
> immer noch nicht so ganz!! D.h. Wenn L/K eine
> Körpererweiterung ist, muss jedes Element [mm]\alpha \in[/mm] L
> überprüft werden, ob es ein n [mm]\in \IN[/mm] gibt, so dass
>  [mm](\alpha)^{n} \in[/mm] K liegt.

Nein, eben nicht. Wenn das so waere, wuerde es (fast gar?) keine Radikalerweiterungen geben!

Zum Beispiel ist $(1 + [mm] \sqrt{2})^n$ [/mm] niemals in [mm] $\IQ$ [/mm] (ausser trivialerweise fuer $n = 0$), obwohl $1 + [mm] \sqrt{2} \in \IQ(\sqrt{2})$ [/mm] liegt und [mm] $\IQ(\sqrt{2}) [/mm] / [mm] \IQ$ [/mm] eine Radikalerweiterung ist!

> So hast du gemeint, oder?! Aber
>  wieso braucht das [mm]Element(\wurzel[3]{1+\wurzel{2}})[/mm] nicht
> zu überprüfen?! [mm]\wurzel[3]{1+\wurzel{2}}[/mm] liegt doch in
> [mm]Q(\wurzel[3]{1+\wurzel{2}}),[/mm] oder?!
>  Kannst du noch kurz erklären?!

Wenn du eine Erweiterung $L = [mm] K(\alpha)$ [/mm] ueber $K$ hast, musst du nur [mm] $\alpha$ [/mm] ueberpruefen. Nicht irgendwelche andere Elemente aus $L$. (Wie oben gesehen muss gar keine Potenz davon in $K$ liegen.)

Du musst nur den Erzeuger [mm] $\alpha$ [/mm] ueberpruefen. Und der ist hier [mm] $\alpha [/mm] = [mm] \sqrt[3]{1 + \sqrt{2}}$. [/mm]

LG Felix


Bezug
        
Bezug
Radikalerweiterung: Aufgabe..
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:36 So 14.11.2010
Autor: antonicwalker

Moin,

habe verstanden!!! Vielen Dank nochmal, und wünsche dir ein schönes
Wochenende!! :)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de