www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Radius: Millikan Versuch
Radius: Millikan Versuch < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Radius: Millikan Versuch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:35 Di 30.11.2010
Autor: esra2

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
ich bin in der 12.Klasse eines Gymnasiums und habe eine Frage zum Millikan-Versuch.

also die Reibungskraft kann ja mit dem Stokesschen Gesetz bestimmt werden F=6*pie*viskosität*v und wenn man dies mit der gewichtskaft gleichsetzt, dann muss man die beiden formeln nach dem radius auflösen. Ich hab zwar die lösung, r=wurzel4,5*viskosität*v/2*dichte von öl*g , jedoch komm ich nicht zu diesem ergebnis wenn ich die gewichtskraft mit der reibungskraft gleichsetze. Könnte mir vielleicht jemand bei der Umformung helfen?


Ich bedanke mich im Voraus!

        
Bezug
Radius: Millikan Versuch: Antwort
Status: (Antwort) fertig Status 
Datum: 00:49 Mi 01.12.2010
Autor: notinX

Hi,

> Hallo,
>  ich bin in der 12.Klasse eines Gymnasiums und habe eine
> Frage zum Millikan-Versuch.

bei diesem Versuch muss man unterscheiden, ob man vom schwebenden oder vom sinkenden Teilchen ausgeht (alternativ gibt es auch noch die Gleichfeld-Methode).
Deiner Frage nach gehe ich aber vom sinkenden Teilchen aus, da sonst keine Reibung auftreten würde.

>  
> also die Reibungskraft kann ja mit dem Stokesschen Gesetz
> bestimmt werden F=6*pie*viskosität*v und wenn man dies mit
> der gewichtskaft gleichsetzt, dann muss man die beiden
> formeln nach dem radius auflösen. Ich hab zwar die

Du hast noch die Auftriebskraft vergessen (Luft ist nicht masselos!). Die Gleichung lautet damit:
[mm] $F_g=F_R+F_A$ [/mm]

> lösung, r=wurzel4,5*viskosität*v/2*dichte von öl*g ,

Versuchs doch mal mit dem Formeleditor, damit wird das ganze leserlicher. Davon abgesehen stimmt die Lösung nicht.

> jedoch komm ich nicht zu diesem ergebnis wenn ich die
> gewichtskraft mit der reibungskraft gleichsetze. Könnte
> mir vielleicht jemand bei der Umformung helfen?

Also schreiben wir die Gleichung erstmal hin:
[mm] $\frac{4}{3}\pi r^{3}\varrho_{Oel}g-6\pi\eta rv-\frac{4}{3}\pi r^{3}\varrho_{Luft}g=0$ [/mm]
jetzt kannst Du ein r ausklammern und die Lösung r=0 ausschließen, da der Radius sicher größer 0 ist.
Dann kannst Du den übrigen Term der Reibungskraft auf die rechte Seite bringen und auf der linken Seite nochmal r (bzw. [mm] $r^2$) [/mm] ausklammern.
Dann musst Du nur noch durch das ausgeklammerte teilen und die Wurzel ziehen und fertig.

Versuchs mal.

Gruß,

notinX

Bezug
                
Bezug
Radius: Millikan Versuch: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:15 Mi 01.12.2010
Autor: esra2

wenn ich die stokessche reibungskraft auf die andere seite bringe, dann müsste sich doch links davon alles gegenseitig auflösen, sodass r=0 ist, oder?

Bezug
                        
Bezug
Radius: Millikan Versuch: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 Mi 01.12.2010
Autor: leduart

Hallo
in der Gewichtskraft [mm] V*\rho*g [/mm] steckt doch [mm] r^3 [/mm]
wenn du also die Gl. durch r dividierst, bleibt [mm] r^2 [/mm] über. danach löst du auf und ziehst am ende die Wurzel
Gruss leduart


Bezug
        
Bezug
Radius: Millikan Versuch: Antwort
Status: (Antwort) fertig Status 
Datum: 01:21 Mi 01.12.2010
Autor: leduart

Hallo
in deiner Reibungskraft fehlt ein r.
und auch das Ergebnis stimmt nicht. kannst du die formeln noch mal überprüfen?
In der Schule lässt man allerdings die Auftriebskraft weg. sie spielt gegenüber den andren bei den möglichen Meßfehlern keine rolle.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de