www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Randbedingungen
Randbedingungen < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Randbedingungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:08 Fr 12.08.2011
Autor: kalor

Hallo Forum

Ich habe mich in die Begriffe schwache Lösung von partiellen Differentialgleichungen und Sobolev Räume etwas eingearbeitet. Nun stellt sich mir folgende Frage: Wenn ich ein Anfangswertproblem habe, indem die Randbedingungen "einfach" sind. D.h. die Funktion oder eine ihrer Ableitungen besitzt auf dem Rand einen vorgegebenen Wert.
Meine Frage dreht sich um die Wahl des Testfunktionenraums. Wenn ich für $\ u $ eine partielle Differentialgleichung habe und folgende Randbedingung:

[mm] u = a \in \IR \text{auf dem Rand meines Gebietes[/mm]

Dann kann ich ja annehmen, dass $\ u =0$  auf dem Rand ist und ich definiere eine schwache Lösung über den Testfunktionenraum $\ [mm] H^k_0 [/mm] $. (der übliche Sobolevraum).
Wenn auf dem Rand Werte für irgendwelche Ableitungen von $\ u $ vorgegeben sind, dann muss ich ja apriori den Testfunktionenraum $\ [mm] H^k [/mm] $ wählen. Hier kann ich ja nicht eine $\ [mm] H^k_0 [/mm] $ Lösung definieren, oder?
Und der letzte Fall, der mich interessieren würde, wäre folgender: Was ist, wenn ich keine Randbedingung habe? Gesucht ist einfach eine Lösung einer PDE in einem Gebiet. Wie kommt man dort auf eine schwache Lösung resp. den geeigneten Testfunktionenraum. Als Bsp, etwas einfaches:

[mm] -\Delta u = f \text{ auf } U \subset \IR^n [/mm]

Ich würde jetzt "normal" eine glatte Funktion mit kompakten Support in die Gleichung multiplizieren und dann partiell integrieren. Resultat:

[mm] \integral_{U}{\nabla u \nabla \phi dx}=\integral_{U}}{f \phi dx} \forall \phi \in C^\infty_0(U)[/mm]

Diese Gleichung möchte ich ja eigentlich für alle Funktionen in irgendwelchen Sobolevräumen haben.  
Hier würde man eine schwache $\ [mm] H^1_0 [/mm] $ Lösung definieren oder?
Gibt es dafür irgendeine Strategie?
Mich verwirrt, dass in letzterer Situation manchmal eine $\ [mm] H^1$ [/mm] Lösung definiert wird und manchmal eine $\ [mm] H^1_0 [/mm] $. Kann man dann einfach "formal" schreiben:

$\ u $ ist eine Lösung von der Klasse $\ [mm] H^1 [/mm] $, falls


[mm] \integral_{U}{\nabla u \nabla \phi dx}=\integral_{U}}{f \phi dx} \forall \phi \in H^1(U)[/mm]

und genau gleich eine Lösung der Klasse $\ [mm] H^1_0 [/mm] $ einfach so geändert:


[mm] \integral_{U}{\nabla u \nabla \phi dx}=\integral_{U}}{f \phi dx} \forall \phi \in H^1_0(U)[/mm]

mfg

KaloR

        
Bezug
Randbedingungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:34 Mo 15.08.2011
Autor: max3000

Hallo.

Ich versuch mich mal an einer Antwort :)

> Nun stellt sich mir folgende Frage: Wenn ich
> ein Anfangswertproblem habe, indem die Randbedingungen
> "einfach" sind. D.h. die Funktion oder eine ihrer
> Ableitungen besitzt auf dem Rand einen vorgegebenen Wert.
>  Meine Frage dreht sich um die Wahl des
> Testfunktionenraums. Wenn ich für [mm]\ u[/mm] eine partielle
> Differentialgleichung habe und folgende Randbedingung:
>  
> [mm]u = a \in \IR \text{auf dem Rand meines Gebietes[/mm]
>  
> Dann kann ich ja annehmen, dass [mm]\ u =0[/mm]  auf dem Rand ist
> und ich definiere eine schwache Lösung über den
> Testfunktionenraum [mm]\ H^k_0 [/mm]. (der übliche Sobolevraum).
> Wenn auf dem Rand Werte für irgendwelche Ableitungen von [mm]\ u[/mm]
> vorgegeben sind, dann muss ich ja apriori den
> Testfunktionenraum [mm]\ H^k[/mm] wählen. Hier kann ich ja nicht
> eine [mm]\ H^k_0[/mm] Lösung definieren, oder?

Den [mm] H^k_0 [/mm] kannst du nur bei homogenen Dirichletbedingungen nehmen. Ansonsten arbeitest du immer im [mm] H^1. [/mm] Die Randdaten kannst du auf verschiedene Arten einbauen. Du kannst die Verletzung der Randbedingung bestrafen oder das entsprechende Gleichungssystem anpassen und die Randdaten in die rechte Seite einbauen. Für den Laplace-Operator ergibt sich ja die schwache Formulierung aus

[mm] $\int_\Omega-\Delta u\cdot [/mm] v = [mm] \int_\Omega\nabla u\nabla [/mm] v - [mm] \int_\Gamma \partial_n u\cdot [/mm] v = [mm] \int_\Omega f\cdot [/mm] u$

für alle [mm] $v\in H^1(\Omega)$. [/mm] Wenn du deine Ansatzfunktionen wählst musst du jetzt die aussortieren, bei denen die Randdaten gegeben sind und bringst diese auf die rechte Seite.

>  Und der letzte Fall, der mich interessieren würde, wäre
> folgender: Was ist, wenn ich keine Randbedingung habe?

Dann ist die Aufgabe nicht sinnvoll gestellt, da es keine eindeutige Lösung gibt.

> Gesucht ist einfach eine Lösung einer PDE in einem Gebiet.
> Wie kommt man dort auf eine schwache Lösung resp. den
> geeigneten Testfunktionenraum. Als Bsp, etwas einfaches:
>  
> [mm]-\Delta u = f \text{ auf } U \subset \IR^n[/mm]
>
> Ich würde jetzt "normal" eine glatte Funktion mit
> kompakten Support in die Gleichung multiplizieren und dann
> partiell integrieren. Resultat:
>  
> [mm]\integral_{U}{\nabla u \nabla \phi dx}=\integral_{U}}{f \phi dx} \forall \phi \in C^\infty_0(U)[/mm]
>  
> Diese Gleichung möchte ich ja eigentlich für alle
> Funktionen in irgendwelchen Sobolevräumen haben.  
> Hier würde man eine schwache [mm]\ H^1_0[/mm] Lösung definieren
> oder?
> Gibt es dafür irgendeine Strategie?
>  Mich verwirrt, dass in letzterer Situation manchmal eine [mm]\ H^1[/mm]
> Lösung definiert wird und manchmal eine [mm]\ H^1_0 [/mm]. Kann man
> dann einfach "formal" schreiben:
>  
> [mm]\ u[/mm] ist eine Lösung von der Klasse [mm]\ H^1 [/mm], falls
>  
>
> [mm]\integral_{U}{\nabla u \nabla \phi dx}=\integral_{U}}{f \phi dx} \forall \phi \in H^1(U)[/mm]
>  
> und genau gleich eine Lösung der Klasse [mm]\ H^1_0[/mm] einfach so
> geändert:
>  
>
> [mm]\integral_{U}{\nabla u \nabla \phi dx}=\integral_{U}}{f \phi dx} \forall \phi \in H^1_0(U)[/mm]
>  

Beim ersten Fall hast du homogene Neumannbedingungen (siehe meine Gleichung von oben und beachte dass dann [mm] $\partial [/mm] u=0$ gilt) und beim zweiten homogene Dirichlet-Bedingungen (das steckt im Ansatzraum drin).

Ich hoffe ich konnte dir ein kleines bisschen helfen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de