www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Prozesse" - Random Walk auf Z^2
Random Walk auf Z^2 < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Random Walk auf Z^2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:28 Do 05.01.2012
Autor: ponyka87

Hallo,
meine Frage lautet:
Seien x, y zwei Punkte auf [mm] Z^2. [/mm] Die Distanz zwischen x und y betrage [mm] n^{1/2-\varepsilon}, [/mm] wobei [mm] \varepsilon [/mm] >0 aber klein. Ich starte in x bzw y zwei unabhängige simple random walks, und lasse sie n Schritte gehen. Meine Frage: in wie vielen Punkten treffen sie sich (mit großer Wahrscheinlichkeit) (steht im Large deviations Buch von Xia Chen)?
Wenn man im gleichen Punkt zwei unabhängige simple random walks startet, so treffen sie sich in ca [mm] n/(\log n)^2 [/mm] Punkten. Wären sie Distanz [mm] n^{1/2} [/mm] log n voneinander, so würden sie sich mit großer Wahrscheinlichkeit gar nicht treffen (Folgerung aus LCLT, findet man zB im Lawler Limic Buch). Was kann man für Punkte die dazwischen liegen sagen?
Vielen Dank für eure Hilfe!

        
Bezug
Random Walk auf Z^2: Antwort
Status: (Antwort) fertig Status 
Datum: 15:57 Do 05.01.2012
Autor: Al-Chwarizmi


> Hallo,
>  meine Frage lautet:
>  Seien x, y zwei Punkte auf [mm]Z^2.[/mm] Die Distanz zwischen x und
> y betrage [mm]n^{1/2-\varepsilon},[/mm] wobei [mm]\varepsilon[/mm] >0 aber
> klein.

Die Distanz zwischen 2 Punkten in [mm] \IZ^2 [/mm] ist doch immer eine
Quadratwurzel aus einer nichtnegativen ganzen Zahl, also
[mm] d(x,y)=n^{1/2} [/mm]  für ein [mm] n\ge0. [/mm]
Weshalb dann hier  [mm] d(x,y)=n^{1/2-\varepsilon} [/mm]  ??  

> Ich starte in x bzw y zwei unabhängige simple
> random walks, und lasse sie n Schritte gehen. Meine Frage:
> in wie vielen Punkten treffen sie sich (mit großer
> Wahrscheinlichkeit) (steht im Large deviations Buch von Xia
> Chen)?
>  Wenn man im gleichen Punkt zwei unabhängige simple random
> walks startet, so treffen sie sich in ca [mm]n/(\log n)^2[/mm]
> Punkten.

Ist da  [mm] $\frac{n}{(log(n))^2}$ [/mm]  gemeint ?

> Wären sie Distanz [mm]n^{1/2}[/mm] log n voneinander, so
> würden sie sich mit großer Wahrscheinlichkeit gar nicht
> treffen (Folgerung aus LCLT, findet man zB im Lawler Limic
> Buch). Was kann man für Punkte die dazwischen liegen
> sagen?
>  Vielen Dank für eure Hilfe!

Unter  "LCLT" bringt Google zum Beispiel:

Locomotive Conservation and Learning Trust

L-Carnitin-L-Tartrat  (so etwas vie Viagra für Oberarmmuskeln)

Lopez Community Land Trust

etc.

Was bedeutet es hier bei deinem Randomwalk ?

LG   Al-Chw.  


Bezug
                
Bezug
Random Walk auf Z^2: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:22 Do 05.01.2012
Autor: ponyka87

Als allererstes möchte ich anfügen (das war nicht klar formuliert), dass ich n gegen unendlich schicken möchte, und mich deswegen nur asymptotische Ergebnisse interessieren.

Zur Distanz:
Sie soll polynomiell etwas weniger als [mm] n^{1/2} [/mm] sein. Deswegen habe ich [mm] n^{1/2-\varepsilon} [/mm] gewählt, wobei eben [mm] \varepsilon [/mm] sehr klein ist (insbesondere <1/2).

Ja, ich meinte [mm] \bruch{n}{(log n)^2}. [/mm]

LCLT = local central limit theorem, sprich dass für [mm] |x|\leq n^{1/2} [/mm] gilt
P(J(n)=x) [mm] =O(n^{-1} exp(-|x|^2/n)), [/mm]
wobei J hier mein SRW auf [mm] Z^2 [/mm] ist.

Vielen Dank schon jetzt für die Hilfe!




Bezug
                        
Bezug
Random Walk auf Z^2: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Sa 21.01.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de