www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Rang einer Matrix
Rang einer Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rang einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:10 Fr 22.02.2008
Autor: SusanneK

Aufgabe
Sei [mm] A \in M_{mn}(K)[/mm], dann gilt:
Genau dann ist Rg(A)=r, wenn es invertierbare Matrizen [mm] P \in M_{mm}(K) [/mm] und [mm] Q \in M_{nn}(K) [/mm] gibt, so dass
[mm] A=P(\summe_{i=1}^{r}E_{ii})Q=P\pmat{I_r & | & 0 ... 0\\-&-&-\\0...0 & | & 0...0} [/mm]

Ich habe diese Frage in keinem anderen Forum gestellt.

Dieses Korollar verstehe ich nicht.
Wie kann ich denn eine Elementarmatrix, die ja quadratisch ist, von links mit [mm] P \in M_{mm}(K) [/mm] und von rechts mit [mm] Q \in M_{nn}(K) [/mm] multiplizieren ?

Danke, Susanne.

        
Bezug
Rang einer Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:16 Fr 22.02.2008
Autor: steppenhahn

P und Q sind glaube ich Matrizen, die Elementare Zeilen- und Spaltenumformungen ausdrücken; aber rein von den Dimensionen her müsste die innere Matrix (also die Einheitsmatrix) schon n bzw. m-Dimensional sein...

Bezug
        
Bezug
Rang einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 Fr 22.02.2008
Autor: Hugo_Sanchez-Vicario

Hallo Susanne,

ich verstehe das nicht ganz. Muss das Korallar nicht so lauten?

Sei [mm]A \in M_{mn}(K)[/mm], dann gilt:
Genau dann ist Rg(A)=r, wenn es invertierbare Matrizen [mm]P \in M_{mm}(K)[/mm] und [mm]Q \in M_{nn}(K)[/mm] gibt, so dass
[mm] $PAQ=\pmat{I_r & | & 0 ... 0\\-&-&-\\0...0 & | & 0...0}$. [/mm]

So stimmt das dann mit den Abmessungen der Matrizen und $P$ bzw. $Q$ stellen die Zeilen- bzw. Spaltenumformungen dar, die man auf $A$ anwendet, wie Stefan schon gesagt hat.

Die resultierende Matrix ist eine [mm] $(m\times [/mm] n)$-Matrix (so wie auch $A$), die fast nur Nullen enthält. Lediglich die ersten $r$ Diagonaleinträge sind Einser.

Hugo

Bezug
                
Bezug
Rang einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:37 Fr 22.02.2008
Autor: SusanneK

Hallo Hugo,
nein, leider habe ich das Korollar schon richtig wiedergegeben.

Deine Variante würde ich ja auch verstehen, aber so ... ?

Soll das vielleicht bedeuten, dass die Einheitmatrix um 0-Zeilen/Spalten erweitert wird, um passend für P und Q zu sein ?

Danke, Susanne.


Bezug
                
Bezug
Rang einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 03:21 Sa 23.02.2008
Autor: Zneques

Hallo,

ich bin auch für [mm] PAQ=\pmat{I_r & | & 0 ... 0\\-&-&-\\0...0 & | & 0...0}, [/mm] oder [mm] P(\summe_{i=1}^{r}E_{ii})Q=P\pmat{I_r & | & 0 ... 0\\-&-&-\\0...0 & | & 0...0}Q. [/mm]

Aus [mm] P(\summe_{i=1}^{r}E_{ii})Q=P\pmat{I_r & | & 0 ... 0\\-&-&-\\0...0 & | & 0...0} [/mm] folgt wegen [mm] \summe_{i=1}^{r}E_{ii}=\pmat{I_r & | & 0 ... 0\\-&-&-\\0...0 & | & 0...0}, [/mm] dass [mm] Q=Id_n. [/mm]

Zudem muss wegen [mm] m-Zeilen\underbrace{\left\{\pmat{x &... &x\\...&&...\\x &... &x}\right.}_{n-Spalten}*\underbrace{\left.\pmat{x &... &x\\...&&...\\x &... &x}\right\}}_{bel.-Spalten} [/mm] n-Zeilen die Matrix [mm] \summe_{i=1}^{r}E_{ii} [/mm] n-Spalten und m-Zeilen haben.

Ciao.

Bezug
                        
Bezug
Rang einer Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:13 Sa 23.02.2008
Autor: SusanneK

Hallo Zneques,
vielen Dank für Deine Hilfe.
Das leuchtet mir ein ... das muss so sein ... vielen Dank !


Bezug
                
Bezug
Rang einer Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:16 Sa 23.02.2008
Autor: SusanneK

Hallo Hugo,
vielen Dank für Deine Hilfe !
Ich habe nochmal drüber gebrütet und auch noch einen erklärenden Beitrag zu meiner Frage bekommen - das ist bestimmt so, wie Du sagst.
Vielen Dank !

Bezug
                        
Bezug
Rang einer Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:56 Sa 23.02.2008
Autor: Hugo_Sanchez-Vicario

Hallo Susanne,

das freut mich, aber die Blumen gebühren Zneques.

Hugo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de