www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Rang einer Matrix + Hauptvekto
Rang einer Matrix + Hauptvekto < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rang einer Matrix + Hauptvekto: Steig da nicht ganz durch
Status: (Frage) beantwortet Status 
Datum: 18:44 So 22.06.2008
Autor: HAWRaptor

Aufgabe
[mm] \vektor{u1' \\ u2' \\ u3'}=\pmat{ 1 & 1 & -2 \\ 1 & 1 & 2 \\ 1 & -1 & 4 }\vektor{u1 \\ u2 \\ u3} [/mm]

Hallo Leute,
ich versuche gerade, diese Aufgabe zu lösen. Als erstes bin ich durch diesen allg. Ansatz [mm] \vec{x}=\vec{c}*e^{\lambda t} [/mm] rein und habe den dreifachen EW 2 errechnet.
Wenn ich nun mit dem EW in die Matrix reingehe, sehe ich, dass ich eine Matrix habe mit dem Rang 1. Und genau hier liegt mein Problem, was heißt das eigentlich? Das ich nur 2 voneinander unabhängige Lösung finden kann? Ich habe als Eigenraum (laut Lösung) [mm] \vec{v}=\vektor{1 \\ 1 \\ 0}s1+\vektor{-2 \\ 0 \\ 1}s2 [/mm]
Meine Frage ist nun, wenn ich eine Matrix zweiten Ranges habe, könnte ich mir dann 3 Vektoren suchen, welche mit den Eigenraum auspannen? Weil mit der gegebenen Aufgabe muss ich ja noch einen Hauptvektor konstruieren...

        
Bezug
Rang einer Matrix + Hauptvekto: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 So 22.06.2008
Autor: MathePower

Hallo HAWRaptor,

> [mm]\vektor{u1' \\ u2' \\ u3'}=\pmat{ 1 & 1 & -2 \\ 1 & 1 & 2 \\ 1 & -1 & 4 }\vektor{u1 \\ u2 \\ u3}[/mm]
>  
> Hallo Leute,
>  ich versuche gerade, diese Aufgabe zu lösen. Als erstes
> bin ich durch diesen allg. Ansatz
> [mm]\vec{x}=\vec{c}*e^{\lambda t}[/mm] rein und habe den dreifachen
> EW 2 errechnet.
>  Wenn ich nun mit dem EW in die Matrix reingehe, sehe ich,
> dass ich eine Matrix habe mit dem Rang 1. Und genau hier
> liegt mein Problem, was heißt das eigentlich? Das ich nur 2
> voneinander unabhängige Lösung finden kann? Ich habe als
> Eigenraum (laut Lösung) [mm]\vec{v}=\vektor{1 \\ 1 \\ 0}s1+\vektor{-2 \\ 0 \\ 1}s2[/mm]
>  
> Meine Frage ist nun, wenn ich eine Matrix zweiten Ranges
> habe, könnte ich mir dann 3 Vektoren suchen, welche mit den
> Eigenraum auspannen? Weil mit der gegebenen Aufgabe muss
> ich ja noch einen Hauptvektor konstruieren...

Wenn eine Matrix Rang 2 hat, dann hat der zugehörige Eigenraum die Dimension 1, gibt also nur einen Eigenvektor.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de