www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Ratensparen
Ratensparen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ratensparen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 Mo 13.04.2009
Autor: m1nd

Aufgabe
Familie Müller schließt bei ihrer Bank einen Ratensparvertrag über vier Jahre Laufzeit ab.
Jeweils zu Jahresanfang werden 3600,00€ einbezahlt.
Die Zinssätze sind gestaffelt:
Zinssatz im ersten Jahr: 3,25%
Zinssatz im zweiten Jahr: 3,5%
Zinssatz im dritten Jahr: 3,8%
Zinssatz im vierten Jahr: 4,25%
Berechnen Sie den Auszahlungsbetrag nach Ablauf der vier Jahre.

Mein Vorschlag:

Ratensparen-Formel: [mm]K_{n}=R*(q^n+q^{n-1}+q^{n-2}+q^{n-3})[/mm]

[mm]K_{4}=3600*(1.0325^4+1.035^3+1.038^2+1.0425)[/mm]
[mm]K_{4}=15714.4961[/mm]

oder (bin mir nicht sicher, wie die Formel richtig angewendet wird)

[mm]K_{4}=3600*(1.0425^4+1.038^3+1.035^2+1.0325)[/mm]
[mm]K_{4}=15851.7349[/mm]

oder (bin mir nicht sicher, wie die Formel richtig angewendet wird)

[mm]K_{4}=3600*(1.0425+1.038+1.035+1.0325)[/mm]
[mm]K_{4}=14 932.8[/mm]

Anderer Vorschlag:

[mm]K_{1}=3600*1.0325[/mm]
[mm]K_{2}=(K_{1}+3600)*1.035[/mm]
[mm]K_{3}=(K_{2}+3600)*1.038[/mm]
[mm]K_{4}=(K_{3}+3600)*1.0425[/mm]
[mm]K_{4}=15843,57[/mm]

Lösung:
15 843,58€ (gerundet) bzw. 15 843,57€ (ungerundet, im Taschenrechner gelassen)

Ich würde gerne wissen, ob ich die Ratensparen-Formel falsch angewendet habe und/oder warum man die Aufgabe nicht mithilfe dieser Formel lösen kann bzw. welche Formel ich benutzen sollte.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Mit freundlichen Grüßen
m1nd

        
Bezug
Ratensparen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 Mo 13.04.2009
Autor: abakus


> Familie Müller schließt bei ihrer Bank einen
> Ratensparvertrag über vier Jahre Laufzeit ab.
> Jeweils zu Jahresanfang werden 3600,00€ einbezahlt.
>  Die Zinssätze sind gestaffelt:
>  Zinssatz im ersten Jahr: 3,25%
>  Zinssatz im zweiten Jahr: 3,5%
>  Zinssatz im dritten Jahr: 3,8%
>  Zinssatz im vierten Jahr: 4,25%
>  Berechnen Sie den Auszahlungsbetrag nach Ablauf der vier
> Jahre.
>  Mein Vorschlag:
>  
> Ratensparen-Formel: [mm]K_{n}=R*(q^n+q^{n-1}+q^{n-2}+q^{n-3})[/mm]
>  
> [mm]K_{4}=3600*(1.0325^4+1.035^3+1.038^2+1.0425)[/mm]
>  [mm]K_{4}=15714.4961[/mm]
>  
> oder (bin mir nicht sicher, wie die Formel richtig
> angewendet wird)
>  
> [mm]K_{4}=3600*(1.0425^4+1.038^3+1.035^2+1.0325)[/mm]
>  [mm]K_{4}=15851.7349[/mm]
>  
> oder (bin mir nicht sicher, wie die Formel richtig
> angewendet wird)
>  
> [mm]K_{4}=3600*(1.0425+1.038+1.035+1.0325)[/mm]
>  [mm]K_{4}=14 932.8[/mm]
>  
> Anderer Vorschlag:
>  
> [mm]K_{1}=3600*1.0325[/mm]
>  [mm]K_{2}=(K_{1}+3600)*1.035[/mm]
>  [mm]K_{3}=(K_{2}+3600)*1.038[/mm]
>  [mm]K_{4}=(K_{3}+3600)*1.0425[/mm]
>  [mm]K_{4}=15843,57[/mm]

Hallo,
für meine Begriffe ist das der richtige Lösungsweg.
Gruß Abakus

>  
> Lösung:
>  15 843,58€ (gerundet) bzw. 15 843,57€ (ungerundet, im
> Taschenrechner gelassen)
>  
> Ich würde gerne wissen, ob ich die Ratensparen-Formel
> falsch angewendet habe und/oder warum man die Aufgabe nicht
> mithilfe dieser Formel lösen kann bzw. welche Formel ich
> benutzen sollte.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Mit freundlichen Grüßen
>  m1nd


Bezug
                
Bezug
Ratensparen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:53 Mo 13.04.2009
Autor: m1nd


> > Familie Müller schließt bei ihrer Bank einen
> > Ratensparvertrag über vier Jahre Laufzeit ab.
> > Jeweils zu Jahresanfang werden 3600,00€ einbezahlt.
>  >  Die Zinssätze sind gestaffelt:
>  >  Zinssatz im ersten Jahr: 3,25%
>  >  Zinssatz im zweiten Jahr: 3,5%
>  >  Zinssatz im dritten Jahr: 3,8%
>  >  Zinssatz im vierten Jahr: 4,25%
>  >  Berechnen Sie den Auszahlungsbetrag nach Ablauf der
> vier
> > Jahre.
>  >  Mein Vorschlag:
>  >  
> > Ratensparen-Formel: [mm]K_{n}=R*(q^n+q^{n-1}+q^{n-2}+q^{n-3})[/mm]
>  >  
> > [mm]K_{4}=3600*(1.0325^4+1.035^3+1.038^2+1.0425)[/mm]
>  >  [mm]K_{4}=15714.4961[/mm]
>  >  
> > oder (bin mir nicht sicher, wie die Formel richtig
> > angewendet wird)
>  >  
> > [mm]K_{4}=3600*(1.0425^4+1.038^3+1.035^2+1.0325)[/mm]
>  >  [mm]K_{4}=15851.7349[/mm]
>  >  
> > oder (bin mir nicht sicher, wie die Formel richtig
> > angewendet wird)
>  >  
> > [mm]K_{4}=3600*(1.0425+1.038+1.035+1.0325)[/mm]
>  >  [mm]K_{4}=14 932.8[/mm]
>  >  
> > Anderer Vorschlag:
>  >  
> > [mm]K_{1}=3600*1.0325[/mm]
>  >  [mm]K_{2}=(K_{1}+3600)*1.035[/mm]
>  >  [mm]K_{3}=(K_{2}+3600)*1.038[/mm]
>  >  [mm]K_{4}=(K_{3}+3600)*1.0425[/mm]
>  >  [mm]K_{4}=15843,57[/mm]
>  Hallo,
> für meine Begriffe ist das der richtige Lösungsweg.
>  Gruß Abakus

Du meinst "Anderer Vorschlag", oder sind die anderen Wege ebenfalls korrekt? Meine Frage ist, warum ich mit der Ratensparen-Formel "[mm]K_{n}=R*(q^n+q^{n-1}+q^{n-2}+q^{n-3})[/mm]" nicht die richtige Lösung erhalte? (habe ich die Formel falsch angewandt oder ist die Formel hier nicht zu benutzen)


Bezug
                        
Bezug
Ratensparen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:09 Mo 13.04.2009
Autor: Steffi21

Hallo, ich gehe stillschweigend davon aus, die Zinsen werden auch verzinst, ebenso verändert sich der jährliche Zinssatz

1. Jahr: 3600,- dafür 117,- Zinsen
2. Jahr: 7317,- dafür 256,10 Zinsen
3. Jahr: 11173,10 dafür 424,58 Zinsen
4. Jahr: 15197,68 dafür 645,90 Zinsen

15843,58

Steffi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de