Rationale Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:23 Mi 22.06.2005 | Autor: | paperjam |
Hallo
Ich würde mich freuen wenn mir jemand bei folgender Aufgabe helfen könnte:
Sei A [mm] \subset [/mm] {x | x [mm] \in \IQ [/mm] und x >0} eine (nicht-leere) Menge positiver rationaler Zahlen mit inf A = 0.
Es gilt zu beweisen dass zu jedem h [mm] \in \IN [/mm] eine Zahl [mm] \bruch{r}{s} \in [/mm] A existiert, so dass r,s [mm] \in \IN [/mm] teilerfremd sind und s > h gilt.
Ich habe versucht die Aufgabe durch vollständige Induktion zu lösen (durch Hochzählen von h), aber leider ist es mir nicht gelungen das in den richtigen Zusammenhang zu bekommen.
|
|
|
|
Hallo!
Da [mm] $\inf [/mm] A=0$, gibt es ein [mm] $x=\bruch {r'}{s'}\in [/mm] A$ mit [mm] $x<\bruch [/mm] 1h$. Diesen Bruch musst du jetzt nur noch kürzen, dann hast du's geschafft! Denn angenommen, [mm] $x=\bruch [/mm] rs$ sei dieser gekürzte Bruch, d.h. $r$ und $s$ sind teilerfremd. Dann ist [mm] $\bruch rs<\bruch [/mm] 1h$, also $rh<s$. Da [mm] $r\in\IN$ [/mm] ist [mm] $h\le [/mm] rh<s$...
Gruß, banachella
|
|
|
|