www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Rationalität beweisen
Rationalität beweisen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rationalität beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:48 So 28.10.2007
Autor: schnuri

Aufgabe
Wir betrachten die folgende rekursive definierte Folge:
[mm]x_1=1, x_n+1=\frac{x_n}{2}+\frac{1}{x_n}, n=1, 2, 3, ...[/mm]

(a) Sind alle Glieder dieser Folge rational?
(b) Geben Sie den Wert des N-ten Gliedes der Folge für N = 3,4,5,6. Wie Groß ist [mm]\left|x_N^2-2\right|[/mm] in jedem Fall?

Hallo Zusammen!

kann mir vielleicht jemand mit dieser Aufgabe helfen? Ich habe Mathe schon seit ein paar Jahren nicht mehr gehabt und jetzt an der Uni geht es schnell zur Sache und ich habe noch Schwierigkeiten mathematische Sachverhalte zu formulieren.

Mein Ansatz sieht so aus:
(a) Jede Rationale Zahl lässt sich durch einen Bruch mit zwei ganzen Zahlen darstellen [mm]x=\frac{a}{b}, x \in \IQ, a,b \in \IN[/mm], wobei [mm]b\ne0[/mm]. Jetzt muss ich doch nur irgendwie zeigen, dass einer der Teile irrational ist, z.B.  [mm]\frac{1}{x_n}[/mm]? Vielleicht durch ein konkretes Beispiel? Z.B. für $ [mm] x_4 [/mm] $ ist der zweite Teil bereits irrational?

(b) Ergebnisse für 3,4,5,6 siehe unten. Ist das richtig, dass [mm]\left|x_N^2-2\right|[/mm] quasi den Abstand zu Wurzel2 liefert? Dieser wäre dann immer < 0,01. Ist das verlangt? Kann ich das einfach so schreiben?

Die ersten Paar Zahlen:
1 = 1.00000000000000
2 = 1.50000000000000
3 = 1.41666666666667
4 = 1.41421568627451
5 = 1.41421356237469
6 = 1.41421356237309
7 = 1.41421356237309
8 = 1.41421356237309
...
Hier sieht man dass das Ergebnis gegen Wurzel2 kovergiert.

Für einen Hinweis wäre ich dankbar!

Viele Grüße,
schnuri

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Rationalität beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:07 So 28.10.2007
Autor: leonhard

a) Mit einer vollständigen Induktion kann leicht gezeigt werden, dass [mm] $x_n\in\IQ\forall n\in\{1,2,3,\ldots\}$ [/mm]

Setze voraus, dass [mm] $x_k \in \IQ$ [/mm] und zeige dass [mm] $x_{k+1} [/mm] = [mm] \ldots \in\IQ$ [/mm]

b) Verlangt ist, den Wert von [mm] $|x_N^2-2|$ [/mm] anzugeben, von 0.01 steht da nichts.

$N=1: [mm] x_N [/mm] = [mm] 1,\quad |1^2-2| [/mm] = 1$
$N=2: [mm] x_N [/mm] = [mm] \frac{3}{2},\quad |(\frac{3}{2})^2-2| [/mm] = [mm] \frac{1}{4}$ [/mm]
$N=3: [mm] \ldots$ [/mm]



Bezug
                
Bezug
Rationalität beweisen: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 18:53 Mo 29.10.2007
Autor: schnuri

Hi leonhard,
stimmt, da war doch was :-) Super, vielen Dank für deine Hinweise!

(b) ist somit echt einfach, hab die Werte eingesetzt.

Musste die Aufgaben heute abgeben, musste mich nochmal einlesen, wie das mit der vollständigen Induktion geht, aber zur Lösung hat es noch nicht gereicht.

Ich kann es auf diese Formel nicht anwenden!! Bin zu doof. Aber was mir aufgefallen ist: Ich kann ja jede rationale Zahl als Bruch $ [mm] \frac{p}{q} [/mm] $ darstellen, kann ich dann nicht sowas sagen wie

$ [mm] x_n [/mm] = [mm] \frac{p_n}{q_n}, p_n,q_n \in \IN [/mm] $, das könnte ich für n=1 und 2 zeigen und dann schreiben: $ [mm] x_n+1 [/mm] = [mm] \frac{p_n}{2*q_n} [/mm] + [mm] \frac{q_n}{p_n} [/mm] $ und laut Definition für die Addtition von rationalen Zahlen $ +: [mm] \IQ [/mm] x [mm] \IQ \rightarrow \IQ [/mm] $ (oder so ähnlich, ist auch neu für mich). Wäre damit nicht bewiesen, dass für alle n, xn rational ist?

Danke nochmals!!!

Gruß,
Juri

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de