www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Raumdiagonalen im Würfel
Raumdiagonalen im Würfel < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Raumdiagonalen im Würfel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:33 So 04.10.2009
Autor: Piacynthia

Aufgabe
Prüfe die Raumdiagonalen eines Würfels auf Orthogonalität!

Hallo,
wir haben diese Aufgabe im Unterricht besprochen, nun habe ich jedoch zwei Fragen dazu:
zuerst wurden die Gleichungen e=a+b+c und f=a-b-c (alles Vektoren)aufgestellt. Ich verstehe die zweite gleichung aber nicht, warum sind denn b und c negativ?
Dann haben wir das Skalarprodukt gebildet: e x f = (a+b+c) x (a-b-c)= [mm] a^2-b^2-c^2, [/mm] müsste hier nicht [mm] a^2-b^2-c^2-2bc [/mm] rauskommen?

dankeschön!

        
Bezug
Raumdiagonalen im Würfel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 So 04.10.2009
Autor: reverend

Hallo Piacynthia,

> Prüfe die Raumdiagonalen eines Würfels auf
> Orthogonalität!
>  Hallo,
>  wir haben diese Aufgabe im Unterricht besprochen, nun habe
> ich jedoch zwei Fragen dazu:
>  zuerst wurden die Gleichungen e=a+b+c und f=a-b-c (alles
> Vektoren)aufgestellt. Ich verstehe die zweite gleichung
> aber nicht, warum sind denn b und c negativ?

Damit findest Du eine andere Raumdiagonale. Vielleicht kannst Du es Dir mit x,y,z leichter vorstellen. Lege den Würfel mit einer Ecke in den Ursprung des Koordinatensystems. Gib ihm die Kantenlänge 1 (oder L oder was Du willst). Vektoriell kommst Du nun von der Ecke im Ursprung zur (raum)diagonal gegenüberliegenden, indem Du einen (L etc.) Schritt/e in x-Richtung (nach rechts), einen in y-Richtung (nach hinten) und einen in z-Richtung (nach oben) gehst.

Von einer anderen Ecke aus (welcher?) musst Du aber anders gehen, um die Raumdiagonale haben, nämlich einen ein x-Richtung (nach rechts, wie bei der anderen), dann aber einen gegen die y-Richtung (also nach vorn) und einen gegen die z-Richtung (also nach unten) gehst. Aha: Du bist von der Ecke links hinten oben zur Ecke rechts vorne unten gegangen.

Wegen der Symmetrie des Würfels genügt es, nur zwei beliebige der vier Raumdiagonalen auf Orthogonalität zu prüfen. Jetzt hast Du ja zwei.

>  Dann haben wir das Skalarprodukt gebildet: e x f = (a+b+c)
> x (a-b-c)= [mm]a^2-b^2-c^2,[/mm] müsste hier nicht [mm]a^2-b^2-c^2-2bc[/mm]
> rauskommen?

Du hast Recht. Für das Skalarprodukt gilt das Distributivgesetz (nicht aber das Assoziativgesetz!), so dass Deine Rechnung genau stimmt.
Allerdings fällt der Term [mm] 2\vec{b}\vec{c} [/mm] ja weg (ist =0), da ja [mm] \vec{b} [/mm] und [mm] \vec{c} [/mm] senkrecht zueinander stehen.

Alles klar? ;-)
lg
reverend
  

> dankeschön!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de