www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Raumverhältnis von Gerade
Raumverhältnis von Gerade < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Raumverhältnis von Gerade: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 03:17 So 23.04.2006
Autor: Andrea25

Aufgabe
Gegeben sind die Gerade g:  x(vektor) = (0,0,2) + l*(1,1,0) und
die E1=x1-2x3=0,
wie auch die E2: x(vektor) =(4,0,3) + l*(4,-1,2)+m*(2,-1,1)

Beschreiben Sie möglichst genau die Lage der Gerade  g  und der Ebene  E1  im Raum!

in der Lösung steht, dass E1 die x2-Achse enthält warum? Weil es dort eine Nullzeile gibt? Und dann heisst es, dass g zur x1- und x2-Ebene parallel verläuft, wie kann ich das errechnen. Versteh es leider nicht. Sorry!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Raumverhältnis von Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 08:16 So 23.04.2006
Autor: Sigrid

Hallo Andrea,

> Gegeben sind die Gerade g:  x(vektor) = (0,0,2) + l*(1,1,0)
> und
> die E1=x1-2x3=0,
> wie auch die E2: x(vektor) =(4,0,3) +
> l*(4,-1,2)+m*(2,-1,1)
>  
> Beschreiben Sie möglichst genau die Lage der Gerade  g  und
> der Ebene  E1  im Raum!
>  
> in der Lösung steht, dass E1 die x2-Achse enthält warum?

Du kannst es dir z.B. so erklären: Die Punkte [mm] $P(;x_2;0) [/mm] $ mit [mm] $x_2 \in \IR [/mm] $ bilden die [mm] x_2-Achse. [/mm] Die Koordinaten dieser Punkte erfüllen aber auch die Gleichung von [mm] E_1. [/mm] Also liegen die Punkte auf [mm] E_1. [/mm]


>  Und dann heisst es, dass
> g zur x1- und x2-Ebene parallel verläuft, wie kann ich das
> errechnen. Versteh es leider nicht. Sorry!

Ganz egal, was du für l einsetzt, du erhälst immer als dritte Koordinate den Wert 2. Da P(0;0;2) auf der Geraden liegt, ist g also eine Parallele zur [mm] x_1x_2-Ebene [/mm] durch den Punkt   P(0;0;2).

>

Reicht dir das als Erklärung?

Gruß
Sigrid

PS Wir freuen uns auch immer über eine freundliche Begrüßung.

Bezug
                
Bezug
Raumverhältnis von Gerade: Ergänzung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:36 So 23.04.2006
Autor: Disap

Moin zusammen.
Auch wenn Sigrid schon wieder eine gute Antwort gegeben hat, habe ich noch einmal eine Kleinigkeit zu ergänzen.

Die Gerade lautete:

>  Gerade g:  x(vektor) = (0,0,2) + l*(1,1,0)

Die Frage lautete

> und dann heisst es, dass g zur x1- und x2-Ebene parallel verläuft, wie kann ich das errechnen.

$g: [mm] \vec{x} [/mm] = [mm] \vektor{0\\0\\2}+l{1\\1\\0}$ [/mm]

Betrachte doch mal den Richtungsvektor [mm] l\vektor{{\red{1}\\\red{1}\\0}} [/mm]

Die Gerade läuft nur die [mm] x_1 [/mm] und [mm] x_2 [/mm] Komponente ab. Und ähnlich lautet auch unsere Ebenengleichung in Parameterform für die [mm] x_1, x_2 [/mm] Ebene, die eben nur diese Koordinaten "abdeckt" oder langläuft.

[mm] E:\vec{x} [/mm] = [mm] \vektor{0\\0\\0}+t\vektor{\red{1}\\0\\0}+s\vektor{0\\\red{1}\\0} [/mm]

Das sieht schon relativ parallel aus!

Im Endeffekt ist es nur noch einmal das, was Sigrid auch schon gesagt hat, nur noch einmal in anderen Worten.

Liebe Grüße,
Disap

Bezug
                        
Bezug
Raumverhältnis von Gerade: Aufgabe 1
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:15 So 23.04.2006
Autor: Andrea25

Hallo an lieben Helfer!

Danke schön! ich glaube es zu verstehen...

LG und nen schönen Sonntag

@sigrid: eigentlich bin ich schon sehr freundlich, selbst wenn es viell. nicht danach ausgesehen hat, doch ich dachte, das muss man hier ganz förmlich machen...lg

Bezug
                
Bezug
Raumverhältnis von Gerade: Normalenvektor.
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:40 So 23.04.2006
Autor: firefox1331

>Hallo Andrea, vll kann ich dir einen allgemeinen Tipp geben: wenn die gerade , ode rbesser eine gerade paralel zu einer ebene sein soll, dann ist der richtingsvektor der Geraden orthogonal zu dem normalenvektor der ebene, dass kannst du ganz leicht überprüfen, in dem du das Skalarprodukt bildest .

Wenn dieses = 0 ist , ist die gerade paralel zur ebene.Geht natütlich nur wenn es sich um einen euklidischen Vektorraum handelt .

Gruß Micha

lim "lernen"= heftig
xjava​script:x();Mathe LK
wird abgebildet auf


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de