Raumwinkel errechnen < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 18:41 Di 20.11.2018 | Autor: | homerq |
Aufgabe | 1. Errechnen des Winkels des eingeschlossenen Vektors zu einer Ebene aus 3 miteinander verbunden Vektoren.
2. Errechnen Endpunkt dieses Vektors
3. Versatz durch eingeschlossenen Kreis am Startpunkt des Vektors |
Hallo,
folgendes Problem:
Meine Maschine mit Koordinatensystem (X,Y,Z) besitzt eine Schwenkachse (B) die um Y schwenkt. Die Werzeugachse ist der 1.Vektor 2-D aus X-Z-Ebene.
aus Y-Z-Ebene habe ich einen gewölbte Fläche zu fräsen.
Ich lege einen Winkel aus dieser Ebene ausgehend vom Zentrum der Gewöbten Fläche fest (2.Vektor).
Dies soll der Tangentenpunkt für den Fräser sein.
Die gekippte Werkzeugachse (Vektor 1) hat an seiner Spitze einen Kreis (Fräser) seine Radius its der Verbindungsvektor zwischen den beiden anderen.
Zur Positionierung muß ich die 3 Koordinaten an der Spitze des Werkzeuges berechen.
Also sind gegeben:
Vektor 1 (Werzeugachse) mit Winkel (30Grd.) aus X-Z-Ebene
Vektor 2 von Mittelpunkt Berabeitungsradius zu Tangentenpunkt über einen Winkel (33,6Grd.)
Verbindungsvektor mit Länge (Werkzeugradius 25)
Gesucht ist:
Die 3 Koordinaten des Werkzeugzentrums (bzw. Versatz zum Tangentenpunkt)
Anbei meine Konstruktion
[Dateianhang nicht öffentlich]
Dateianhänge: Anhang Nr. 1 (Typ: PNG) [nicht öffentlich]
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 11:11 Sa 24.11.2018 | Autor: | homerq |
Nach langer Recherche und mangels erweiterter Mathemakikkenntisse habe ich die Vermutung, mittels Skalarproduktrechnung auf die gesuchten Winkel und Maße zu kommen. Ich habe das Skalarprodukt der beiden Vektoren benutzt, um den Winkel zwischen ihnen zu ermitteln. Leider deckt sich das in keiner Weise mit meiner Konstruktion. Die beiden Vektoren schneiden sich nicht, sind aber durch den roten Vektor (25mm lang) verbunden.
Hier nochmal die Ansicht von oben mit allen beteiligten Komponenten und gesuchten Größen mit Konstruktionsergebnis.
[Dateianhang nicht öffentlich]
Dateianhänge: Anhang Nr. 1 (Typ: PNG) [nicht öffentlich]
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 11:09 Mo 26.11.2018 | Autor: | homerq |
Mir fällt gerade auf, es fehlt eine Koordinate für den bekannten Punkt.
Inzwischen ist mir auch klar, was ich mit dem Skalarprodukt zwischen den beiden äusseren Vektoren errechnet habe und konnte es in meiner Konstruktion bestätigen. Leider hilft mir dieser Winkel nicht weiter. Ich muß wohl irgendwie den eingeschlossenen Vektor (25 lang) zu einer Ebene machen und die äußeren Vektoren als Senkrechten verwenden und dann diesbezüglich versuchen Winkel zu errechnen, oder?
Hier die aktualisierte Konstruktion.
[Dateianhang nicht öffentlich]
Dateianhänge: Anhang Nr. 1 (Typ: PNG) [nicht öffentlich]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:33 Di 27.11.2018 | Autor: | homerq |
Ein Lösungsansatz wäre, den Abstand der beiden Vektoren zu berechnen, das wäre aber die kürzeste Verbindung, ist es aber nicht ist, sondern eine Strecke mit bestimmter Länge zwischen ihnen. Das Problem liegt wohl eigentlich darin, daß man auf kein Zwischenergebnis kommt, sondern alle Faktoren miteinander verknüpft sind. So kommt man auch nur mit einer komplexen Formel zu einem Ergebnis.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:20 Mi 28.11.2018 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 08:44 Mi 28.11.2018 | Autor: | homerq |
Aufgabe | Rechnen mit Ellipsen |
Ich bemerke gerade, daß die Angaben für eine genaue Definition nicht ausreichen. Es fehlt die Bedingung, daß der Kreis den Tangentenpunkt auch aus der YZ-Ebene nur tangieren soll.
Aus Ansicht YZ ist der Kreis eine Ellipse. Kann man vielleicht die entstehende Länge des Kreisradius aus dieser Ansicht ermitteln?
Hier die Ansicht:
[Dateianhang nicht öffentlich]
Dateianhänge: Anhang Nr. 1 (Typ: PNG) [nicht öffentlich]
|
|
|
|
|
Hallo,
das ganze ist für mich komplett unübersichtlich. Entweder hast du das Problem noch nicht begriffen oder du versuchst hier mehrere Probleme auf einmal zu lösen und verwirrst dich dadurch selber. Der Ansatz mit dem Skalarprodukt geht wahrscheinlich schon, aber du hast ja bis jetzt nichts vorgerechnet...
LG
hoho
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:57 Do 29.11.2018 | Autor: | chrisno |
Hallo,
ich gehe von den von Dir angegebene Vorkenntnissen aus. Dann ist klar, dass Du nicht das Problem komplett mathematisch formulieren kannst.
Es ist offensichtlich nicht einfach zu verstehen, obwohl Du dir viel Mühe mit den Zeichnungen gegeben hast. Ich vermute, dass das der Grund ist, warum Du bisher keine Antwort bekommen hast, denn es gibt hier mehrere im Forum, die ich für ausreichend kompetent halte.
Mich hat die Zeit, die ich investieren müsste, von einer Antwort abgehalten. Als ersten Schritt müsste ich Stück für Stück verstehen, was mit Deinen Angaben genau gemeint ist.
Ich versuche mal mein Problem zu erklären:
"Meine Maschine mit Koordinatensystem (X,Y,Z) besitzt eine Schwenkachse (B) die um Y schwenkt."
Koordinatensytem xyz verstehe ich, ich gehe von der Standardorientierung, z nach oben, aus.
Was mit der Schwenkachse gemeint ist, verstehe ich nicht. Was wird um diese Achse geschwenkt?
"Die Werzeugachse ist der 1.Vektor 2-D aus X-Z-Ebene."
Ich nehme an, das bezieht sich auf die Zeichnung. Allerdings kenne ich auch den Begriff Werkzeugachse nicht.
"aus Y-Z-Ebene habe ich einen gewölbte Fläche zu fräsen."
Ich vermute: Das Werkstück hat eine ebene Fläche, die der y-z-Ebene entspricht.
Ich nehme mal an, dass das Material des Werkstücks im Bereich negativer x-Werte vorhanden ist und aus dem Bereich positiver x-Werte Luft ist und das Werzeug von dieser Seite kommt.
Ist mit Gewölbter Fläche eine Kugelkappe gemeint?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:20 Fr 30.11.2018 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:22 Sa 01.12.2018 | Autor: | homerq |
Nach einigem ausprobieren und der Möglichkeit, den Fall zu konstruieren und damit ein Ergebnis zum Vergleich zu haben, bin ich nun zu einem ersten Ergebnis gekommen.
Da nun auch endlich Interesse an meinem Projekt angezeigt wurde, meine Erklärung aber nicht verständlich genug war, versuche ich jetzt nochmal die Aufgabe und wie ich zum Ergebnis gekommen bin, zu erklären.
Ich habe ein rotierendes Werkzeug, also ein Kreis, der in Ausgangsposition die Z-Achse als Mittellinie hat. Ein Maschinenkoordinatensystem ist wie ein ganz normales mit X/Y/Z Achse Z+ oben X+ rechts Y+ nach vorn, ein anderes kenne ich leider nicht.
Das rotierende Werkzeug ergibt also einen Kreis, der um die Y-Achse um einen variabel festgelegten Winkel gedreht (geschwenkt) werden kann.
Aus Y-Z Ebene ergibt sich damit eine Ellipse mitdefinierten Innenkreis (a) (Kreisradius * sin Drehwinkel um Y) und Aussenkreis (b) gleich Kreisradius.
aus der Y-Z Ebene soll eine tangente Linie "bearbeitet" werden. Die Tangente ist dabei das Profilelement. Es entsteht ein Tangentenpunkt an der Ellipse, dieser wird von mir festgelegt. Es ist das Zentrum der Ellipse zu berechnen.
Über eine Tangenten-Formel und den daraus ergebenden Winkel [mm] (\beta) [/mm] zwischen X-Achse (aus y-z ebene) und Verbindung Ellipsenzentrum und Tangentenpunkt konnte ich dann den Mittelpunkt errechnen.
Nach Auskürzen sind folgende Formeln entstanden:
[mm] x=a*\wurzel{1/(b^2/a^2*(tan\beta)^2+1)} [/mm]
und
[mm] y=b*\wurzel{1/(1+1/(b^2/a^2*(tan\beta)^2))}
[/mm]
Die Ergebnisse decken sich mit meiner Konstruktion.
Das letzte Bild der Konstruktion ist allerdings fehlerhaft.
Hier aktualisiert:
[Dateianhang nicht öffentlich]
Dateianhänge: Anhang Nr. 1 (Typ: PNG) [nicht öffentlich]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:20 Di 25.12.2018 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:20 Fr 21.12.2018 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|