www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Eigenwertprobleme" - Rayleigh-Quotient
Rayleigh-Quotient < Eigenwertprobleme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Eigenwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rayleigh-Quotient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:18 Mi 15.02.2006
Autor: Polynomy

Hallo zusammen,
ich habe eine Frage zum Beweis eines Satzes für symmetrische Matrizen:

Für symmetrische Matrizen gilt bekanntlich: der maximale Rayleigh-Quotient ist der größte Eigenwert der Matrix. (analog für min.)
Dies würde ich gerne beweisen, und ich hab da auch schon was, aber ich finde, das stimmt nicht *g* (ist aber aus der Vorlesung meines Professors).

Also: A symmetrisch --> es ex. n reelle Eigenwerte [mm] $\lambda_1\le...,\le \lambda_n$ [/mm] zu orthogonalen Eigenvektoren [mm] $u_1,..., u_n$. [/mm]
Also kann man einen bel. Vektor x als Linearkombination schreiben:
$$x= [mm] \summe_{i=1}^{n}c_i u_i [/mm] .$$
Also ist $$Ax= [mm] \summe_{i=1}^{n}c_i\lambda_i u_i$$ [/mm] und $$x^TAx= [mm] \summe_{i=1}^{n}\lambda_i c_i^2.$$ [/mm]
Für A=I (Einheitsmatrix) hat man $$x^Tx= [mm] \summe_{i=1}^{n}c_i^2.$$ [/mm]

Bis dahin ist alles klar. Aber jetzt:
Da [mm] $$\lambda_1 \summe_{i=1}^{n}c_i^2 \le \summe_{i=1}^{n}\lambda_i c_i^2 \le \lambda_n \summe_{i=1}^{n}c_i^2$$ [/mm] gilt, folgt die Behauptung. Dass daraus die Beh. folgt, stimmt
(durch $$ [mm] \summe_{i=1}^{n} c_i^2 [/mm] $$ teilen), aber das 2. $ [mm] \le [/mm] $ -Zeichen ist doch nicht richtig??!!

[mm] $\lambda_1$ [/mm] ist der kleinste EW, also stimmt das 1. Zeichen, aber wen ich alle [mm] $\lambda_i$ [/mm] in die Summe schreibe ist das doch nicht zwangsläufig kleiner als wenn ich den größten EW [mm] $\lambda_n$ [/mm] davor schreibe, oder???

Wer kann mir helfen?

Danke!

        
Bezug
Rayleigh-Quotient: Antwort
Status: (Antwort) fertig Status 
Datum: 11:23 Mi 15.02.2006
Autor: mathiash

Hallo Polynomy,

doch, das stimmt doch: Alle [mm] \lambda_i [/mm] sind kleiner/gleich dem [mm] \lambda_n, [/mm] also auch


[mm] \lambda_i\cdot c_i^2\leq \lambda_n\cdot c_i^2 [/mm]  

(weil [mm] c_i^2 [/mm] nicht-negativ ist), und dann kannst Du [mm] \lambda_n [/mm] aus der Summe herausziehen.

Viele Gruesse,

Mathias

Bezug
                
Bezug
Rayleigh-Quotient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:33 Mi 15.02.2006
Autor: Polynomy

Danke!! :-)
Das ist echt dämlich von mir! So was Simples aber auch! :-) Ich war der Meinung, man müsste dann $n [mm] \lambda_n$ [/mm] rausziehen,... aber jetzt hab ich's verstanden (ist ja eine Konstante)!!

Danke für die super-schnelle Antwort!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Eigenwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de