www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Re: Parabeln
Re: Parabeln < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Re: Parabeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:16 So 22.08.2004
Autor: nixchecker

Hi,
ich bin neu auf dem gymnasium(von der realschule, also haltet mich bitte nciht für vollkommen verblödet...)
wir haben jetzt auch parabeln und so...
unsere hausaufgabe war, zu der parabel , die wir im unterricht hatten, weitere punkte auszurechnen, was ja theoretisch gar nicht so schwer sein dürft weil ich ja eigentlich nur andere zahlen einsetzten müsste, ich bekomme aber immer vollkommen unmögliche ergebnisse raus...
die gleichung ist: 4/3(x-3)²+12
ich muss die hausaufgabe bis morgen haben... also bitte helft mir!!!!!!
Esther

        
Bezug
Re: Parabeln: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 18:51 So 22.08.2004
Autor: Fermat2k4

Hi,

also ich bekomm auch ziemlich merkwürdige Werte heraus. Prinzipiell geht es doch nur darum(wenn ichs richtig verstanden habe), Punkte zu finden, die auf dem Graphen der Funktion liegen. Also einfach einen beliebigen x-Wert einsetzen und den dazugehörigen Funktionswert bestimmen! Beispielsweise habe ich für f(0)= [mm] \bruch{4}{39} [/mm] (besser als Bruch stehen lassen) herausbekommen. Sollte allerdings stimmen !
Ansonsten ist es wirklich nur stumpfes anwenden des Kochrezeptes ! Es könnte aber auch sein, dass du die Funktionsvorschrift auch flasch abgeschrieben hast ! Naja, wie dem auch sei.....

Viel Spass noch !

Alexander


Bezug
                
Bezug
Re: Parabeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:59 Mo 23.08.2004
Autor: nixchecker

Hi,
danke schön!
Ich habs jetzt gelöst!

Ciao
Nixchecker

Bezug
        
Bezug
Re: Parabeln: Antwort
Status: (Antwort) fertig Status 
Datum: 22:56 So 22.08.2004
Autor: Marc

Hallo Esther,

[willkommenmr]

>  ich bin neu auf dem gymnasium(von der realschule, also
> haltet mich bitte nciht für vollkommen verblödet...)
>  wir haben jetzt auch parabeln und so...
>  unsere hausaufgabe war, zu der parabel , die wir im
> unterricht hatten, weitere punkte auszurechnen, was ja
> theoretisch gar nicht so schwer sein dürft weil ich ja
> eigentlich nur andere zahlen einsetzten müsste, ich bekomme
> aber immer vollkommen unmögliche ergebnisse raus...
>  die gleichung ist: 4/3(x-3)²+12

[mm] $y=\bruch{4}{3}*(x-3)^2+12$ [/mm]

Es stimmt, dass einfach nur Werte für x einzusetzen sind.

Damit aber "schöne" Werte herauskommen, kannst du dir ja mal die Funktionsvorschrift ansehen und dir überlegen, für welche Werte für [mm] (x-3)^2 [/mm] sich gerade die 3 im Nenner des Vorfaktors wegkürzt.
Das ist doch dann der Fall, wenn (x-3)² durch 3 teilbar ist; das ist wiederum genau dann der Fall, wenn "x-3" durch 3 teilbar ist, was genau dann der Fall ist, wenn x selbst durch 3 teilbar ist.

Also müßte für x-Werte, die durch 3 teilbar sind, auch nur ganze Zahlen für y herauskommen:

$x=0$: [mm] $y=\bruch{4}{3}*(0-3)^2+12=\bruch{4}{3}*9+12=12+12=24$ [/mm]
$x=3$: [mm] $y=\bruch{4}{3}*(3-3)^2+12=12$ [/mm]
$x=6$: [mm] $y=\bruch{4}{3}*(6-3)^2+12=\bruch{4}{3}*9+12=12+12=24$ [/mm]
etc.

Falls das unklar geblieben sein sollte, frage einfach nach! :-)

Viele Grüße,
Marc


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de