www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Real- und Imaginärteil
Real- und Imaginärteil < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Real- und Imaginärteil: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:49 So 06.05.2012
Autor: MaxPlanck

Aufgabe
Finden Sie Real- und Imaginärteil von [mm] $\frac{z+1}{2z-5}$, [/mm] wo $z=a+ib$.

Ist die Rechnung wirklich so mühsam wie ich denke? Ich habe mal drauf los gerechnet und musste feststellen, dass sie eigentlich recht langwierig ist.
Gibt es einen 'Trick' oder etwas ähnliches, wie das einfacher geht?

        
Bezug
Real- und Imaginärteil: Antwort
Status: (Antwort) fertig Status 
Datum: 10:54 So 06.05.2012
Autor: fred97


> Finden Sie Real- und Imaginärteil von [mm]\frac{z+1}{2z-5}[/mm], wo
> [mm]z=a+ib[/mm].
>  Ist die Rechnung wirklich so mühsam wie ich denke?


Lass uns an Deinen Gedanken teilhaben !

> Ich
> habe mal drauf los gerechnet und musste feststellen, dass
> sie eigentlich recht langwierig ist.


Das ist schon der Fall.


> Gibt es einen 'Trick' oder etwas ähnliches, wie das
> einfacher geht?

Zeig Deine Rechnungen !

FRED


Bezug
                
Bezug
Real- und Imaginärteil: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:11 So 06.05.2012
Autor: MaxPlanck

Ich habe zuerst mit der konjugiert komplexen Zahl multipliziert, d.h.
[mm] \[\frac{|z|^{2}+\bar{z}}{2|z|^{2}-5\bar{z}}\] [/mm]
[mm] \[\frac{(|z|^{2}+\bar{z})(2|z|^{2}-5\bar{z})}{(2|z|^{2}-5\bar{z})(2|z|^{2}-5\bar{z})}\] [/mm]
Und dann folgen einige Rechenschritte, die aber letzten Endes keine Erleuchtung gebracht haben. Mathematica hat dann einen elends langen Term für den Realteil ausgespuckt.

Bezug
                        
Bezug
Real- und Imaginärteil: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 So 06.05.2012
Autor: fred97


> Ich habe zuerst mit der konjugiert komplexen Zahl
> multipliziert, d.h.
>  [mm]\[\frac{|z|^{2}+\bar{z}}{2|z|^{2}-5\bar{z}}\][/mm]


Du hast also mit  [mm] \bar{z} [/mm] erweitert ? Das bringt nichts.


Erweitere den ursprünglichen Bruch mit $2 [mm] \bar{z}-5$. [/mm] Dann wird der Nenner reell.

FRED

>  
> [mm]\[\frac{(|z|^{2}+\bar{z})(2|z|^{2}-5\bar{z})}{(2|z|^{2}-5\bar{z})(2|z|^{2}-5\bar{z})}\][/mm]
>  Und dann folgen einige Rechenschritte, die aber letzten
> Endes keine Erleuchtung gebracht haben. Mathematica hat
> dann einen elends langen Term für den Realteil
> ausgespuckt.  


Bezug
                                
Bezug
Real- und Imaginärteil: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:31 So 06.05.2012
Autor: MaxPlanck

Dankeschön, das ist zielführend.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de