Real- und Imaginärteil bestimm < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:31 Fr 09.11.2007 | Autor: | Elfe |
Aufgabe | a) Bestimmen Sie Real- und Imaginärteil folgender komplexer Zahlen:
(i) ...
(ii) ...
(iii) [mm] (\bruch{1-i}{1+i})^{k} [/mm] , k [mm] \in \IZ
[/mm]
b) Es seien a,z [mm] \in \IC [/mm] mit |a| < 1. Zeigen Sie: [mm] |\bruch{z-a}{1-\overline{a}z}| [/mm] < 1 [mm] \gdw [/mm] |z| < 1 |
Hallo,
also Teil 1 und 2 der Aufgabe a habe ich gelöst. Aber bei Teil 3 hänge ich, weil ich mir da nichts wirklich herleiten kann. Also ich hab mal geschaut wie das aussieht, wenn ich verschiedene Zahlen für k einsetze und da kommt immer entweder 1,-1,i oder -i raus. Aber ich glaub das hilft mir nicht viel weiter. Ich weiß also nicht wirklich was ich mit dem k so recht anfangen soll. wäre dankbar für Hilfe. Ich weiß, dass der innere Teil -i ergibt, aber hilft mir das weiter?
Und bei Aufgabe b muss ich ja zeigen, dass es in die eine Richtung gilt und dann in die andere, richtig? Hat jemand da auch einen Ansatz für mich, wie ich z.b. von |z| < 1 auf das erste komme?
Für kleine Hilfestellungen wäre ich wirklich dankbar
lg Elfe
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:59 Fr 09.11.2007 | Autor: | rainerS |
Hallo Elfe!
> a) Bestimmen Sie Real- und Imaginärteil folgender komplexer
> Zahlen:
> (i) ...
> (ii) ...
> (iii) [mm](\bruch{1-i}{1+i})^{k}[/mm] , k [mm]\in \IZ[/mm]
>
> b) Es seien a,z [mm]\in \IC[/mm] mit |a| < 1. Zeigen Sie:
> [mm]|\bruch{z-a}{1-\overline{a}z}|[/mm] < 1 [mm]\gdw[/mm] |z| < 1
> Hallo,
>
> also Teil 1 und 2 der Aufgabe a habe ich gelöst. Aber bei
> Teil 3 hänge ich, weil ich mir da nichts wirklich herleiten
> kann. Also ich hab mal geschaut wie das aussieht, wenn ich
> verschiedene Zahlen für k einsetze und da kommt immer
> entweder 1,-1,i oder -i raus. Aber ich glaub das hilft mir
> nicht viel weiter. Ich weiß also nicht wirklich was ich mit
> dem k so recht anfangen soll. wäre dankbar für Hilfe. Ich
> weiß, dass der innere Teil -i ergibt, aber hilft mir das
> weiter?
Ja, damit hast du schon mehr als die Hälfte des Weges geschafft!
Du musst also [mm](-i)^k[/mm] anders ausdrücken. Schreibe [mm]k=4l+m[/mm] mit [mm]l\in\IZ[/mm] und [mm]m\in\{0,1,2,3\}[/mm]. Was ist [mm](-i)^{4l+m} = (-i)^{4l}*(-i)^m[/mm]?
> Und bei Aufgabe b muss ich ja zeigen, dass es in die eine
> Richtung gilt und dann in die andere, richtig? Hat jemand
> da auch einen Ansatz für mich, wie ich z.b. von |z| < 1 auf
> das erste komme?
Tipp: Quadriere den Bruch [mm]\bruch{|z-a|}{|1-\overline{a}z|}[/mm] und benutze die Identität [mm]|x|^2=x*\bar{x}[/mm] für alle [mm]x\in\IC[/mm].
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:04 Fr 09.11.2007 | Autor: | Elfe |
Hallo Rainer!
>
> Ja, damit hast du schon mehr als die Hälfte des Weges
> geschafft!
>
> Du musst also [mm](-i)^k[/mm] anders ausdrücken. Schreibe [mm]k=4l+m[/mm] mit
> [mm]l\in\IZ[/mm] und [mm]m\in\{0,1,2,3\}[/mm]. Was ist [mm](-i)^{4l+m} = (-i)^{4l}*(-i)^m[/mm]?
>
Darf ich fragen, wie genau du auf k=4l+m kommst? Bzw. wie ich darauf kommen sollte? Also ich bin da grad ein bisschen verwirrt...
> Tipp: Quadriere den Bruch [mm]\bruch{|z-a|}{|1-\overline{a}z|}[/mm]
> und benutze die Identität [mm]|x|^2=x*\bar{x}[/mm] für alle
> [mm]x\in\IC[/mm].
>
Mit b beschäftige ich mich dann später...
Liebe Grüße
Elfe
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:36 Fr 09.11.2007 | Autor: | rainerS |
Hallo Elfe!
> Hallo Rainer!
>
> >
> > Ja, damit hast du schon mehr als die Hälfte des Weges
> > geschafft!
> >
> > Du musst also [mm](-i)^k[/mm] anders ausdrücken. Schreibe [mm]k=4l+m[/mm] mit
> > [mm]l\in\IZ[/mm] und [mm]m\in\{0,1,2,3\}[/mm]. Was ist [mm](-i)^{4l+m} = (-i)^{4l}*(-i)^m[/mm]?
>
> >
>
> Darf ich fragen, wie genau du auf k=4l+m kommst? Bzw. wie
> ich darauf kommen sollte? Also ich bin da grad ein
> bisschen verwirrt...
Du hast doch selbst geschrieben, dass die Potenzen von (-i) abwechselnd 1,-1,i und -i sind. Das kommt daher, dass [mm](-i)^4=(-1)^4*i^4=1[/mm] ist, und daher zum Beispiel [mm](-i)^3=(-i)^7=(-i)^{11}[/mm] usw.
Andere Möglichkeit: du stellst die komplexen Zahlen durch Betrag und Winkel zur x-Achse dar:
[mm]-i=\mathrm{e}^{3i\pi/2}[/mm].
Dann ist
[mm](-i)^n=\mathrm{e}^{3ni\pi/2} \mathop{=}\limits_{\overbrace{n=4l+m}} \mathrm{e}^{6li\pi+3mi\pi/2} = \mathrm{e}^{6il\pi} * \mathrm{e}^{3mi\pi/2} \mathop{=}\limits_{\overbrace{\mathrm{e^{2i\pi}=1}}} = \mathrm{e}^{3mi\pi/2}[/mm]
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:17 Sa 10.11.2007 | Autor: | Elfe |
Hallo Rainer,
> Du musst also [mm](-i)^k[/mm] anders ausdrücken. Schreibe [mm]k=4l+m[/mm] mit
> [mm]l\in\IZ[/mm] und [mm]m\in\{0,1,2,3\}[/mm]. Was ist [mm](-i)^{4l+m} = (-i)^{4l}*(-i)^m[/mm]?
>
Ich hab das jetzt versucht mit einer Fallunterscheidung zu lösen und ich denke, es hat geklappt.
Jetzt zu b:
> > Und bei Aufgabe b muss ich ja zeigen, dass es in die eine
> > Richtung gilt und dann in die andere, richtig? Hat jemand
> > da auch einen Ansatz für mich, wie ich z.b. von |z| < 1 auf
> > das erste komme?
>
> Tipp: Quadriere den Bruch [mm]\bruch{|z-a|}{|1-\overline{a}z|}[/mm]
> und benutze die Identität [mm]|x|^2=x*\bar{x}[/mm] für alle
> [mm]x\in\IC[/mm].
>
Also ich hab das zwar quadriert aber ich muss zugeben, dass ich überhaupt nicht verstehe was das für einen Nutzen für mich haben kann.
Wenn du mir da helfen würdest?
Liebe Grüße Elfe
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:10 Sa 10.11.2007 | Autor: | rainerS |
Hallo Elfe!
> > > Und bei Aufgabe b muss ich ja zeigen, dass es in die eine
> > > Richtung gilt und dann in die andere, richtig? Hat jemand
> > > da auch einen Ansatz für mich, wie ich z.b. von |z| < 1 auf
> > > das erste komme?
> >
> > Tipp: Quadriere den Bruch [mm]\bruch{|z-a|}{|1-\overline{a}z|}[/mm]
> > und benutze die Identität [mm]|x|^2=x*\bar{x}[/mm] für alle
> > [mm]x\in\IC[/mm].
> >
>
> Also ich hab das zwar quadriert aber ich muss zugeben, dass
> ich überhaupt nicht verstehe was das für einen Nutzen für
> mich haben kann.
Du sollst doch die Äquivalenz von [mm]\bruch{|z-a|}{|1-\overline{a}z|}\le 1[/mm] mit [mm]|z|\le1[/mm] zeigen, wen [mm]|a|\le 1[/mm] ist.
[mm]\bruch{|z-a|}{|1-\overline{a}z|}\le 1 \Leftrightarrow \bruch{|z-a|^2}{|1-\overline{a}z|^2}\le 1 \Leftrightarrow |z-a|^2 \le |1-\overline{a}z|^2[/mm].
Nun ist für beliebige x: [mm]|x|^2=x*\overline{x}[/mm]. Das setzt du ein.
Beachte dabei die Rechenregeln: [mm]\overline{x+y}=\oberline x +\overline y[/mm], [mm]\overline{x*y}=\overline x *\overline y[/mm], [mm]\overline{\overline{x}} = x[/mm].
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:33 Sa 10.11.2007 | Autor: | Elfe |
Hallo Rainer,
okay, das klingt natürlich logisch. Das werde ich auch gleich versuchen. Jetzt habe ich vorher nur noch die Frage ob [mm] |\bruch{z-a}{1-\overline{a}z}| [/mm] das gleiche ist wie [mm] \bruch{|z-a|}{|1-\overline{a}z|} [/mm] ?
Die Frage könnte jetzt schön blöd gerade sein und ich glaube, das ist sie auch, nur wollte ich halt nochmal sicher gehen, vor allem weil es sich um komplexe Zahlen handelt und mit denen hab ich mich noch nicht ganz angefreundet.
Gruß Elfe
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:10 Sa 10.11.2007 | Autor: | rainerS |
Hallo Elfe!
> okay, das klingt natürlich logisch. Das werde ich auch
> gleich versuchen. Jetzt habe ich vorher nur noch die Frage
> ob [mm]|\bruch{z-a}{1-\overline{a}z}|[/mm] das gleiche ist wie
> [mm]\bruch{|z-a|}{|1-\overline{a}z|}[/mm] ?
Ja, das ist das Gleiche. Es gilt nämlich
[mm]|x|*|y| = |x*y|[/mm]
und damit auch die Beziehung für den Quotienten: [mm]\bruch{|x|}{|y|} = \left|\bruch{x}{y}\right|[/mm].
Am Einfachsten sieht man das an der Darstellung mit Betrag und Winkel: wenn [mm]x=|x|*\mathrm{e}^{i\phi_x}[/mm] und [mm]y=|y|*\mathrm{e}^{i\phi_y}[/mm], dann ist
[mm]\bruch{x}{y}= \bruch{|x|}{|y|} * \mathrm{e}^{i(\phi_x-\phi_y)}[/mm]
und
[mm]\left|\bruch{x}{y}\right|= \bruch{|x|}{|y|}*\left|\mathrm{e}^{i(\phi_x-\phi_y)}\right| = \bruch{|x|}{|y|}[/mm]
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:21 So 11.11.2007 | Autor: | Elfe |
Hallo Rainer,
danke für die viele Hilfe, ich werde mal versuchen sie anzuwenden :)
Schönen Restsonntag wünsche ich noch
Liebe Grüße
Elfe
|
|
|
|