www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Real- und Imaginärteil rechnen
Real- und Imaginärteil rechnen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Real- und Imaginärteil rechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 Mo 24.03.2008
Autor: Tauphi

Aufgabe
Berechnen Sie den Real- und Imaginärteil der komplexen Zahlen

1) [mm] z=(1-\wurzel{3}i)^{5} [/mm]

2) [mm] z=\bruch{4i+3}{(2-i)}+\bruch{2}{(1-3i)^{2}} [/mm]

3) [mm] z=(2*e^{3.2i})^{5} [/mm]

Ahoi,

ich glaube ich habe eine mehr oder minder dumme Frage zum Berechnen mit komplexen Zahlen. Die Aufgabe lautet lediglich, ich solle Real- und Imaginärteil berechnen, aber irgendwie ist mir dieses gesamte "Komplexe Zahlen"-Konzept nicht so ganz klar.

Ich habe zwar im Internet viel gesucht, aber ich weiss immernoch nicht so wirklich, was da von mir gewollt ist.

Könnte mir jemand die Aufgaben, den Sinn dahinter und den Weg zur "Lösung" (Welche auch immer das sein mag) im Detail erklären?

Vielen Dank im voraus
Andi

        
Bezug
Real- und Imaginärteil rechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:38 Mo 24.03.2008
Autor: Martinius

Hallo Tauphi,

der Zweck dieser Aufgabe ist es wohl, die sog. kartesische Form einer komplexen Zahl und die Exponentialform (Polarform) einer komplexen Zahl ineinander umrechnen zu können.

$z = a + bi = [mm] |z|*e^{i\varphi} [/mm] = [mm] |z|*(cos(\varphi)+isin(\varphi))$ [/mm]      

$|z| [mm] =\wurzel{a^2+b^2}$ [/mm]  

[mm] $\varphi [/mm] = arctan [mm] \bruch{b}{a}$ [/mm]  , wobei der Quadrant der komplexen Zahl zu berücksichtigen ist:

I. Quadrant:  [mm] $\varphi [/mm] = arctan [mm] \left(\bruch{b}{a}\right)$ [/mm]

II. / III. Quadrant:   [mm] $\varphi [/mm] = arctan [mm] \left(\bruch{b}{a}\right)+\pi$ [/mm]

IV. Quadrant: [mm] $\varphi [/mm] = arctan [mm] \left(\bruch{b}{a}\right)+2pi$ [/mm]

Hier soll der Winkel im Intervall [mm] [0,2\pi) [/mm] liegen.


a) praktischerweise potenziert man komplexe Zahlen i. a. in der Polarform. ( Fehlt da ein i in der Klammer ?)

b) Vermutlich fehlt da ein i im Nenner. Die Brüche sind dann mit dem konjugiert komplexen Nenner zu erweitern, auf dass der Nenner reell werde.

c) Potenzieren und dann in die kartesische Form umwandeln durch "Ausmultiplizieren".


LG, Martinius

Bezug
                
Bezug
Real- und Imaginärteil rechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:47 Mo 24.03.2008
Autor: Tauphi

Aufgabe
Berechnen Sie den Real- und Imaginärteil der komplexen Zahlen

1) [mm] z=(1-\wurzel{3}i)^{5} [/mm]

2) [mm] z=\bruch{4i+3}{(2-i)}+\bruch{2}{(1-3i)^{2}} [/mm]

3) [mm] z=(2*e^{3.2i})^{5} [/mm]

Hallo Martinius,

danke für die Hinweise, die letzten beiden Aufgaben hatte ich tatsächlich falsch abgeschrieben ... Habe sie hier nochmals reinkopiert ... diesmal korrekt ...

Zu deiner Antwort ...

>
> a) praktischerweise potenziert man komplexe Zahlen i. a. in
> der Polarform. ( Fehlt da ein i in der Klammer ?)
>  
> b) Vermutlich fehlt da ein i im Nenner. Die Brüche sind
> dann mit dem konjugiert komplexen Nenner zu erweitern, auf
> dass der Nenner reell werde.
>  
> c) Potenzieren und dann in die kartesische Form umwandeln
> durch "Ausmultiplizieren".
>  
>

Leider verstehe ich die Erklärung nicht so recht ... könntest du mir das anhand der Aufgaben mal vorrechnen und zeigen, wie man die "löst"? Das ist mir leider noch alles etwas zu theoretisch

Danke im voraus

Grüße
Andi

Bezug
                        
Bezug
Real- und Imaginärteil rechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:06 Mo 24.03.2008
Autor: algieba

Hi

Bei uns in der Vorlesung wird der Realteil und Imaginärteil einer komplexen Zahl so definiert:

[mm]z=a+ib[/mm]
[mm]Re(z)=a[/mm]
[mm]Im(z)=b[/mm]

das bedeutet, der Realteil ist der Teil der komplexen Zahl wo das i nicht steht, und der Imaginärteil der Teil der komplexen Zahl wo das i steht.

Du musst die drei Aufgaben also so umformen, das du sie in der Form [mm]a+ib[/mm] dastehen hast, dann kannst du den Real- und den Imaginärteil ganz einfach ablesen.

Das Umformen macht man normalerweise mit der komplexen Konjugation.
Allgemein bedeutet das:
[mm]\overline{x+iy}=x-iy[/mm]

Wenn du eine komplexe Zahl mit der komplexen Konjugation malnimmst, bekommst du eine reelle Zahl.

So kannst du die Brüche vereinfachen, und teilweise reell machen, damit du am Ende die Form [mm]a+ib[/mm] bekommst.


Viele Grüße

Bezug
                        
Bezug
Real- und Imaginärteil rechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 Mo 24.03.2008
Autor: Martinius

Hallo Tauphi,

> Berechnen Sie den Real- und Imaginärteil der komplexen
> Zahlen
>  
> 1) [mm]z=(1-\wurzel{3}i)^{5}[/mm]
>  
> 2) [mm]z=\bruch{4i+3}{(2-i)}+\bruch{2}{(1-3i)^{2}}[/mm]
>  
> 3) [mm]z=(2*e^{3.2i})^{5}[/mm]



1) [mm]z=(1-\wurzel{3}i)^{5}[/mm]

$|z| = [mm] \wurzel{1^2+3} [/mm] = 2$

[mm] $\varphi [/mm] = [mm] arctan\left(\bruch{-\wurzel{3}}{1} \right)+2\pi=\bruch{5}{6}\pi$ [/mm]

[mm]z=(1-\wurzel{3}i)^{5} = \left(2*exp\left(i\bruch{5}{6}\pi \right) \right)^5 =2^5*exp\left(i\bruch{25}{6}\pi \right)[/mm]

Da die Polardarstellung [mm] 2\pi-periodisch [/mm] ist:

[mm]z=32*exp\left(i\bruch{1}{6}\pi \right) = 32*\left(cos\left(\bruch{1}{6}\pi\right)+isin\left(\bruch{1}{6}\pi\right)\right) = 32*\wurzel{\bruch{3}{4}}+16i[/mm]


2) [mm]z=\bruch{4i+3}{(2-i)}+\bruch{2}{(1-3i)^{2}}=\bruch{(3+4i)(2+i)}{(2-i)(2+i)}+\bruch{2}{(1-6i-9)}=\bruch{(6+3i+8i-4)}{4+1}+\bruch{2}{(-8-6i)}[/mm]

[mm]z=\bruch{(2+11i)}{5}+\bruch{2*(-8+6i)}{(-8-6i)(-8+6i)}=\bruch{(2+11i)}{5}+\bruch{(-16+12i)}{64+36}=\bruch{(2+11i)}{5}+\bruch{(-16+12i)}{100}=\bruch{40+220i-16+12i}{100}[/mm]

$z = [mm] \bruch{24+208i}{100}=0,24+2,08i$ [/mm]


3) [mm]z=(2*e^{3.2i})^{5}=32*e^{16i} \approx 32*e^{2,54648*2\pi}=32*e^{0,54648*2\pi}=32*e^{1,092958*\pi}=32*(cos(1,092958*\pi)+isin(1,092958*\pi)[/mm]

$z= -30,6451-9,2129i$

Wenn Du an dem Winkel nicht interessiert bist, geht natürlich auch

[mm]z=(2*e^{3.2i})^{5}=32*e^{16i}=32*(cos(16)+isin(16)) = -30,6451-9,2129i[/mm]


LG, Martinius







Bezug
                                
Bezug
Real- und Imaginärteil rechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:40 So 30.03.2008
Autor: Tauphi

Ahoi,

>
> 1) [mm]z=(1-\wurzel{3}i)^{5}[/mm]
>  
> [mm]|z| = \wurzel{1^2+3} = 2[/mm]
>  
> [mm]\varphi = arctan\left(\bruch{-\wurzel{3}}{1} \right)+2\pi=\bruch{5}{6}\pi[/mm]
>  
> [mm]z=(1-\wurzel{3}i)^{5} = \left(2*exp\left(i\bruch{5}{6}\pi \right) \right)^5 =2^5*exp\left(i\bruch{25}{6}\pi \right)[/mm]
>  
> Da die Polardarstellung [mm]2\pi-periodisch[/mm] ist:
>  
> [mm]z=32*exp\left(i\bruch{1}{6}\pi \right) = 32*\left(cos\left(\bruch{1}{6}\pi\right)+isin\left(\bruch{1}{6}\pi\right)\right) = 32*\wurzel{\bruch{3}{4}}+16i[/mm]
>  
>

Die 2. und 3. Aufgabe konnte ich lösen und hab ich auch verstanden. Bei der ersten haperts immernoch stark bei mir.
Ich verstehe oben selbst den ersten Zwischenschritt nicht, wie du von [mm]z=(1-\wurzel{3}i)^{5}[/mm] auf [mm]|z| = \wurzel{1^2+3} = 2[/mm] kommst.

Von den Schritten danach ganz zu schweigen *schäm*
Könntest du mir die mal im einzelnen etwas näher erläutern, was du da warum wie gemacht hast?

Vielen Dank im voraus und besonders für die bisherige Hilfe!

Lg
Andi

Bezug
                                        
Bezug
Real- und Imaginärteil rechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:44 So 30.03.2008
Autor: MathePower

Hallo Tauphi,

> Ahoi,
>  
> >
> > 1) [mm]z=(1-\wurzel{3}i)^{5}[/mm]
>  >  
> > [mm]|z| = \wurzel{1^2+3} = 2[/mm]
>  >  
> > [mm]\varphi = arctan\left(\bruch{-\wurzel{3}}{1} \right)+2\pi=\bruch{5}{6}\pi[/mm]
>  
> >  

> > [mm]z=(1-\wurzel{3}i)^{5} = \left(2*exp\left(i\bruch{5}{6}\pi \right) \right)^5 =2^5*exp\left(i\bruch{25}{6}\pi \right)[/mm]
>  
> >  

> > Da die Polardarstellung [mm]2\pi-periodisch[/mm] ist:
>  >  
> > [mm]z=32*exp\left(i\bruch{1}{6}\pi \right) = 32*\left(cos\left(\bruch{1}{6}\pi\right)+isin\left(\bruch{1}{6}\pi\right)\right) = 32*\wurzel{\bruch{3}{4}}+16i[/mm]
>  
> >  

> >
>
> Die 2. und 3. Aufgabe konnte ich lösen und hab ich auch
> verstanden. Bei der ersten haperts immernoch stark bei
> mir.
>  Ich verstehe oben selbst den ersten Zwischenschritt nicht,
> wie du von [mm]z=(1-\wurzel{3}i)^{5}[/mm] auf [mm]|z| = \wurzel{1^2+3} = 2[/mm]
> kommst.

[mm]z=\left(1-i*\wurzel{5}\right)^{5}=\left(z_{1}\right)^{5}[/mm]

Es ist [mm]\vmat{z_{1}}=\wurzel{\left(Re \ z_{1}\right)^{2}+\left(Im \ z_{1}\right)^{2}}[/mm]

,wobei Re [mm]z_{1}[/mm] der Realteil  und Im [mm]z_{1}[/mm] der Imaginärteil von [mm]z_{1}[/mm] ist.

>  
> Von den Schritten danach ganz zu schweigen *schäm*
>  Könntest du mir die mal im einzelnen etwas näher
> erläutern, was du da warum wie gemacht hast?

Es gilt [mm]z_{1}=r*\cos\left(\varphi\right)+i*r*\sin\left(\varphi\right)[/mm]

Demnach

[mm]r*\cos\left(\varphi\right)=1[/mm]
[mm]r*\sin\left(\varphi\right)=-\wurzel{3}[/mm]

Daraus ergibt sich [mm]\tan\left(\varphi\right)=-\wurzel{3}[/mm]

Also [mm]\varphi=\arctan\left(-\wurzel{3}\right)=-\bruch{\pi}{6}[/mm]

Da der Tangens [mm]\pi[/mm]-periodisch ist, lautet die korrekte Lösung:

[mm]\varphi=\arctan\left(-\wurzel{3}\right)=-\bruch{\pi}{6}+k*\pi, \ k \in \IZ[/mm]

Weil [mm]\sin\left(\varphi\right) < 0 [/mm] und [mm]\cos\left(\varphi\right) > 0 [/mm] muß [mm] \bruch{3\pi}{2} < \varphi < 2\pi[/mm] gelten.

Deshalb ergibt sich: [mm]\varphi=-\bruch{\pi}{6}+2\pi=\bruch{5}{6}*\pi[/mm]

Also gilt: [mm]z_{1}=2*e^{i*\bruch{5}{6}*\pi}[/mm]

[mm]z=\left(2*e^{i*\bruch{5}{6}*\pi}\right)^{5}=2^{5}*\left(e^{i*\bruch{5}{6}*\pi}\right)^{5}=32*e^{i*\bruch{25}{6}*\pi}=32*e^{i*\bruch{1}{6}*\pi}[/mm]

[mm]=32*\left(\cos\left(\bruch{\pi}{6}\right)+i*\sin\left(\bruch{\pi}{6} \right)\right)=32*\left(\bruch{1}{2}*\wurzel{3}+i*\bruch{1}{2}\right)=16*\left(\wurzel{3}+i\right)=16*\wurzel{3}+i*16[/mm]

>
> Vielen Dank im voraus und besonders für die bisherige k
> Hilfe!
>  
> Lg
>  Andi

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de