www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Real-und Imaginärteil
Real-und Imaginärteil < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Real-und Imaginärteil: bestimmen bei Potenzen
Status: (Frage) beantwortet Status 
Datum: 23:08 Mo 26.09.2011
Autor: froggy60

Aufgabe
[mm] (\bruch {1}{\wurzel{2}}(1+i))^{100} [/mm]

habe hier eine alte klausuraufgabe. eigentlich kann ich real-und imaginärteil bestimmen allerdings verwirrt mich die potenz massiv. was mach ich denn damit? ausmultiplizieren oder stehen lassen? und wenn ja wie multipliziert man am besten ein hoch 100 im kopf aus?
vielen dank schon mal :-)


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Real-und Imaginärteil: Antwort
Status: (Antwort) fertig Status 
Datum: 23:13 Mo 26.09.2011
Autor: kushkush

Hallo,


betrachte [mm] $(\frac{1}{\sqrt{2}}(1+i))^{2}$ [/mm] und dann [mm] $()^{100}=()^{2}()^{98}$ [/mm]




Gruss
kushkush

Bezug
        
Bezug
Real-und Imaginärteil: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:21 Mo 26.09.2011
Autor: froggy60

vielen dank für die superschnelle antwort :D
und ich muss die potenzen dann nach dem so aufsplitten bis ich am ende nur noch ein quadrat hab oder seh ich das grade falsch?

Bezug
                
Bezug
Real-und Imaginärteil: Antwort
Status: (Antwort) fertig Status 
Datum: 23:28 Mo 26.09.2011
Autor: kushkush

Hallo,


der zweite Schritt ist nicht  nötig. Du brauchst  [mm] $()^{2}$ [/mm] zu rechnen und daraus auf [mm] $()^{100}$ [/mm]  schliessen.


Gruss
kushkush

Bezug
                        
Bezug
Real-und Imaginärteil: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:52 Mo 26.09.2011
Autor: froggy60

vllt liegt es auch an der uhrzeit aber ich verstehe nicht ganz wie ich von dem hoch 2 auf die 100 kommen soll oO oder ist das ergebnis von hoch 2 das gleiche wie von hoch 100? vllt steh ich auch nur einfach sehr standhaft auf dem schlauch...

Bezug
                                
Bezug
Real-und Imaginärteil: Antwort
Status: (Antwort) fertig Status 
Datum: 23:56 Mo 26.09.2011
Autor: schachuzipus

Hallo,


> vllt liegt es auch an der uhrzeit aber ich verstehe nicht
> ganz wie ich von dem hoch 2 auf die 100 kommen soll oO oder
> ist das ergebnis von hoch 2 das gleiche wie von hoch 100?
> vllt steh ich auch nur einfach sehr standhaft auf dem
> schlauch...

Na, das sind doch "nur" Potenzgesetze:

[mm] $z^{100}=\left(z^2\right)^{50}$ [/mm]

Rechne vielleicht noch einfacher zunächst [mm] $(1+i)^4$ [/mm] aus und dann hoch 25 ...

Gruß

schachuzipus


Bezug
                                
Bezug
Real-und Imaginärteil: Antwort
Status: (Antwort) fertig Status 
Datum: 00:20 Di 27.09.2011
Autor: reverend

Hallo nochmal,

> vllt liegt es auch an der uhrzeit aber ich verstehe nicht
> ganz wie ich von dem hoch 2 auf die 100 kommen soll oO oder
> ist das ergebnis von hoch 2 das gleiche wie von hoch 100?
> vllt steh ich auch nur einfach sehr standhaft auf dem
> schlauch...

Wenn Du auch nur einmal die 10 Sekunden aufgewendet hättest, dieses Quadrat auszurechnen, bräuchtest Du Dich nicht in allgemeiner Erkenntnistheorie zu ergehen.

Tus einfach mal.

Grüße
reverend


Bezug
                                        
Bezug
Real-und Imaginärteil: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:00 Di 04.10.2011
Autor: froggy60

[mm] (1+i)^2 [/mm] = [mm] 1+2i+i^2=2i [/mm] stimmt das oder darf ich es nicht wie eine binomische formel ausrechnen? so schaff ich es höchstens jetzt noch im kopf auszurechnen(die restlichen 98), in der klausur aber wohl nimmer :-/ ich bin mir sicher, dass ich was übersehen habe und deswegen auch eine woche drüber gebrütet, aber ich finde es nicht....ausser [mm] (1+i)^2=0...kann [/mm] das wirklich sein?

Bezug
                                                
Bezug
Real-und Imaginärteil: Antwort
Status: (Antwort) fertig Status 
Datum: 11:04 Di 04.10.2011
Autor: Valerie20


> [mm](1+i)^2[/mm] = [mm]1+2i+i^2=2i[/mm] stimmt das oder darf ich es nicht wie
> eine binomische formel ausrechnen?

Du musst es "wie eine Binomische Formel" ausrechnen.
Ja, das stimmt.

[mm] (((1+i)^{2})^{50})=(2i)^{50}=((2i)^{2})^{25}=(-4)^{25}... [/mm]
Es wird sicher keiner von dir Erwarten das Endergebnis im Kopf auszurechnen.
gruß

Zu deiner ursprünglichen Aufgabe:

[mm] (\bruch{1}{\wurzel{2}}(1+j))^{100}=(\bruch{1}{\wurzel{2}}+\bruch{j}{\wurzel{2}})^{100}=((\bruch{1}{\wurzel{2}}+\bruch{j}{\wurzel{2}})^{2})^{50}=(\bruch{1}{2}+\bruch{2j}{\wurzel{2}*\wurzel{2}}+\bruch{j^{2}}{2})^{50}=(j)^{50}=((j)^{2})^{25}=(-1)^{25}=-1 [/mm]




Bezug
        
Bezug
Real-und Imaginärteil: Antwort
Status: (Antwort) fertig Status 
Datum: 23:31 Mo 26.09.2011
Autor: reverend

Hallo,

> [mm](\bruch {1}{\wurzel{2}}(1+i))^{100}[/mm]
>  habe hier eine alte
> klausuraufgabe. eigentlich kann ich real-und imaginärteil
> bestimmen allerdings verwirrt mich die potenz massiv. was
> mach ich denn damit? ausmultiplizieren oder stehen lassen?
> und wenn ja wie multipliziert man am besten ein hoch 100 im
> kopf aus?
> vielen dank schon mal :-)

Wie wärs mit der Polardarstellung und dem Satz von Moivre?

Grüße
reverend


Bezug
                
Bezug
Real-und Imaginärteil: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:49 Mo 26.09.2011
Autor: froggy60

hmm...kenne ich bis jetzt nur vom hören-sagen, ist also wohl nicht geeignet

Bezug
                        
Bezug
Real-und Imaginärteil: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:21 Di 27.09.2011
Autor: reverend

Hallo,

> hmm...kenne ich bis jetzt nur vom hören-sagen, ist also
> wohl nicht geeignet

Gut, wenn Ihr das noch nicht hattet, kannst Du es in der Klausur auch nicht verwenden.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de