www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Rechenregeln
Rechenregeln < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechenregeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:02 Do 28.06.2007
Autor: sancho1980

Hallo

ich komme irgendwie mit den Rechenregeln von Erwartungswerten und Zufallsvariablen durcheinander:

Mir liegt beispielsweise der Beweis fuer den Verschiebungssatz vor:

V(X) = [mm] E((X-E(X))^2 [/mm] = [mm] E(X^2 [/mm] - 2XE(X) + [mm] [E(X)]^2) [/mm] = [mm] E(X^2) [/mm] - [mm] [E(X)]^2 [/mm]

Da mir das alles zu schnell geht, hab ich es mal versucht, nachzuvollziehen:

V(X) = [mm] E((X-E(X))^2 [/mm] = [mm] E(X^2 [/mm] - 2XE(X) + [mm] [E(X)]^2) [/mm] = [mm] E(X^2) [/mm] - [mm] 2E(X^2) [/mm] - [mm] [E(X)]^2 [/mm]

Wieso ist jetzt - [mm] 2E(X^2) [/mm] = [mm] -2[E(X)]^2) [/mm]

Schliesslich gilt

E(X * Y) = E(X) * E(Y)

nur wenn X und Y unabhaengig sind (was ja hier wohl ganz klar nicht der Fall ist..

lg

martin

        
Bezug
Rechenregeln: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 Do 28.06.2007
Autor: Zwerglein

Hi, sancho,

> ich komme irgendwie mit den Rechenregeln von
> Erwartungswerten und Zufallsvariablen durcheinander:
>  
> Mir liegt beispielsweise der Beweis fuer den
> Verschiebungssatz vor:
>  
> V(X) = [mm]E((X-E(X))^2[/mm] = [mm]E(X^2[/mm] - 2XE(X) + [mm][E(X)]^2)[/mm] = [mm]E(X^2)[/mm] -
> [mm][E(X)]^2[/mm]
>  
> Da mir das alles zu schnell geht, hab ich es mal versucht,
> nachzuvollziehen:
>  
> V(X) = [mm]E((X-E(X))^2[/mm] = [mm]E(X^2[/mm] - 2XE(X) + [mm][E(X)]^2)[/mm] = [mm]E(X^2)[/mm] -
> [mm]2E(X^2)[/mm] - [mm][E(X)]^2[/mm]

Ich schreib's mal ausführlich auf:

V(X) = [mm] \summe_{i=1}^{k}(x_{i} [/mm] - [mm] E(X))^{2}*P(X=x_{i}) [/mm]

= [mm] \summe_{i=1}^{k}x_{i}^{2}*P(X=x_{i}) [/mm] - 2*E(X)* [mm] \summe_{i=1}^{k}x_{i}*P(X=x_{i}) [/mm] + [mm] (E(X))^{2}*\summe_{i=1}^{k}P(X=x_{i}) [/mm]

Nun ist natürlich
[mm] \summe_{i=1}^{k}P(X=x_{i}) [/mm] = 1 (Summe aller Wahrscheinlichkeiten der Verteilung!)
und
[mm] \summe_{i=1}^{k}x_{i}*P(X=x_{i}) [/mm] = E(X)  (so ist der Erwartungswert ja definiert!)

und somit:

V(X) = [mm] \summe_{i=1}^{k}x_{i}^{2}*P(X=x_{i}) [/mm] - 2*E(X)*  E(X) + [mm] (E(X))^{2}*1 [/mm]

= [mm] \summe_{i=1}^{k}x_{i}^{2}*P(X=x_{i}) [/mm] - [mm] (E(X))^{2} [/mm]

Da man den ersten Summanden als Erwartungswert der Zufallsgröße [mm] X^{2} [/mm] auffassen kann, ergibt sich so:

V(X) = [mm] E(X^{2}) [/mm] - [mm] (E(X))^{2} [/mm]  ("Verschiebungssatz")

mfG!
Zwerglein




Bezug
                
Bezug
Rechenregeln: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 22:03 Do 28.06.2007
Autor: bellybutton

Ja genau, nur dass der Erwartungswert nur im diskreten Fall so als Summe berechnet wird.

[mm] E(X-EX)^2 [/mm] = [mm] E(X^2 [/mm] -2X*EX [mm] +(EX)^2)= EX^2 [/mm] -2EX*EX + [mm] (EX)^2 [/mm] (EX ist Konstante, deshalb ist E(EX)=EX, ebenso ist [mm] E((EX)^2)=(EX)^2 [/mm] !) = [mm] EX^2 -2*(EX)^2 +(EX)^2 [/mm] = [mm] EX^2 -(EX)^2. [/mm]


Noch einmal zur Ergänzung: Erwartungswerte können als Summe im diskreten und als Integral im stetigen aufgefasst werden. Sie beschreiben den erwarteten Wert einer ZV (dies ist sozusagen eine Funktion von [mm] \omega, [/mm] je nachdem welches Ereignis eintritt) Habt Ihr nun, z.B. [mm] \sum [/mm] -2*x , dann könnt ihr die -2 rausziehen, ebenso beim Integral.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de