Rechenregeln (Diff im R^{n}) < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:34 Mi 08.06.2016 | Autor: | Ardbeg |
Aufgabe | Sei U [mm] \subset \IR^{n} [/mm] offen und seien f, g: U [mm] \to \IR [/mm] zwei in [mm] x_{0} [/mm] differenzierbare Funktionen.
Zeigen Sie:
a) f+g ist in [mm] x_{0} [/mm] differenzierbar und es gilt: [mm] D(f+g)(x_{0})=Df(x_{0})+Dg(x_{0})
[/mm]
b) f*g ist in [mm] x_{0} [/mm] differenzierbar und es gilt: [mm] D(f*g)(x_{0})=g(x_{0})*Df(x_{0})+f(x_{0})*Dg(x_{0})
[/mm]
c) Ist [mm] g(x_{0})\not= [/mm] 0 , so ist [mm] \bruch{f}{g} [/mm] in [mm] x_{0} [/mm] differenzierbar und es gilt: [mm] D(\bruch{f}{g})(x_{0})=\bruch{g(x_{0})*Df(x_{0})-f(x_{0})*Dg(x_{0})}{g(x_{0})^{2}} [/mm] |
Hallo!
Ich wollte nur mal überprüfen lassen ob meine Lösung soweit in Ordnung ist.
Sei [mm] Df(x_{0})=A [/mm] und [mm] Dg(x_{0})=B, [/mm] sowie [mm] h\not= [/mm] 0 und
[mm] \delta_{f}(h)=\bruch{f(x_{0}+h)-(f(x_{0})+Ah)}{|h|} [/mm] und [mm] \delta_{g}(h)=\bruch{g(x_{0}+h)-(g(x_{0})+Bh)}{|h|}
[/mm]
Nach Vorraussetzung gilt [mm] \delta_{f}(h) \to [/mm] 0 ; [mm] \delta_{g}(h) \to [/mm] 0 ,für h [mm] \to [/mm] 0.
a)
[mm] =\limes_{h\rightarrow 0} \bruch{(f+g)(x_{0}+h)-((f+g)(x_{0})+(A+B)h)}{|h|}
[/mm]
[mm] =\limes_{h\rightarrow 0} \delta_{f}(h)+\delta_{g}(h)
[/mm]
[mm] =\limes_{h\rightarrow 0} \delta_{f}(h) [/mm] + [mm] \limes_{h\rightarrow 0} \delta_{g}(h)= [/mm] 0
[mm] \Rightarrow [/mm] f+g ist diff'bar in [mm] x_{0} [/mm] und es gilt: [mm] D(f+g)(x_{0})=Df(x_{0})+Dg(x_{0})
[/mm]
b)
[mm] =\limes_{h\rightarrow 0} \bruch{(fg)(x_{0}+h)-((fg)(x_{0})+(A*g(x_{0})+f(x_{0})*B)h)}{|h|}
[/mm]
[mm] =\limes_{h\rightarrow 0} \bruch{(f(x_{0})+Ah+\delta_{f}(h)|h|)*(g(x_{0})+Bh+\delta_{g}(h)*|h|)-(f(x_{0})*g(x_{0})+g(x_{0})*Ah+f(x_{0})Bh)}{|h|}
[/mm]
[mm] =\limes_{h\rightarrow 0} \bruch{1}{|h|}*(Ah)(Bh)+\delta_{f}(h)(g(x_{0})+Bh+\delta_{g}(h)|h|)+\delta_{g}(|h|)(f(x_{0}+Ah)
[/mm]
Da gilt [mm] |Ah|\le|A||h| [/mm] und [mm] |Bh|\le|B||h| [/mm] (wegen Dreiecksungleichung im [mm] R^{n} [/mm] und der Cauchy-Schwarz-Ungleichung), ist die rechte Seite 0 für h [mm] \to [/mm] 0.
[mm] =\limes_{h\rightarrow 0} \delta_{f}(h)*g(x_{0})+ \limes_{h\rightarrow 0} f(x_{0}+h)*\delta_{g}(h)
[/mm]
[mm] \Rightarrow [/mm] f*g ist diff'bar in [mm] x_{0} [/mm] und es gilt: [mm] D(f*g)(x_{0})=g(x_{0})*Df(x_{0})+f(x_{0})*Dg(x_{0})
[/mm]
c)
[mm] \IA [/mm] : Sei n=1 und [mm] f\equiv [/mm] 1, sonst kann man [mm] \bruch{f}{g}=f(\bruch{1}{g}) [/mm] schreiben und b) verwenden.
Also gilt:
[mm] =\limes_{h\rightarrow 0} \bruch{1}{|h|}*(\bruch{1}{g(x_{0}+h)}-(\bruch{1}{g(x_{0})}-\bruch{Bh}{g(x_{0})^{2}})) [/mm] (da [mm] g(x_{0})\not= [/mm] 0)
[mm] =\limes_{h\rightarrow 0} \bruch{1}{|h|}*\bruch{1}{g(x_{0})*g(x_{0}+)}*(g(x_{0}-(g(x_{0}+Bh+\delta_{g}(h)|h|)+\bruch{g(x_{0}+h)}{g(x_{0})}*Bh)
[/mm]
[mm] =\limes_{h\rightarrow 0} \bruch{g(x_{0}+h) \delta_{f}(h) - f(x_{0}) \delta_{g}(h)}{g(x_{0})g(x_{0}+h)}
[/mm]
[mm] =\limes_{h\rightarrow 0} \bruch{g(x_{0}+h) \delta_{f}(h)}{g(x_{0})g(x_{0}+h)} [/mm] - [mm] \limes_{h\rightarrow 0} \bruch{f(x_{0}) \delta_{g}(h)}{g(x_{0})g(x_{0}+h)}= [/mm] 0
[mm] \Rightarrow \bruch{f}{g} [/mm] ist in [mm] x_{0} [/mm] diff'bar und es gilt: [mm] D(\bruch{f}{g})(x_{0})=\bruch{g(x_{0})*Df(x_{0})-f(x_{0})*Dg(x_{0})}{g(x_{0})^{2}}
[/mm]
Dürfte doch alles soweit richtig sein, oder?
Gruß
Ardbeg
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:29 Do 09.06.2016 | Autor: | fred97 |
> Sei U [mm]\subset \IR^{n}[/mm] offen und seien f, g: U [mm]\to \IR[/mm] zwei
> in [mm]x_{0}[/mm] differenzierbare Funktionen.
> Zeigen Sie:
> a) f+g ist in [mm]x_{0}[/mm] differenzierbar und es gilt:
> [mm]D(f+g)(x_{0})=Df(x_{0})+Dg(x_{0})[/mm]
> b) f*g ist in [mm]x_{0}[/mm] differenzierbar und es gilt:
> [mm]D(f*g)(x_{0})=g(x_{0})*Df(x_{0})+f(x_{0})*Dg(x_{0})[/mm]
> c) Ist [mm]g(x_{0})\not=[/mm] 0 , so ist [mm]\bruch{f}{g}[/mm] in [mm]x_{0}[/mm]
> differenzierbar und es gilt:
> [mm]D(\bruch{f}{g})(x_{0})=\bruch{g(x_{0})*Df(x_{0})-f(x_{0})*Dg(x_{0})}{g(x_{0})^{2}}[/mm]
> Hallo!
>
> Ich wollte nur mal überprüfen lassen ob meine Lösung
> soweit in Ordnung ist.
>
> Sei [mm]Df(x_{0})=A[/mm] und [mm]Dg(x_{0})=B,[/mm] sowie [mm]h\not=[/mm] 0 und
>
> [mm]\delta_{f}(h)=\bruch{f(x_{0}+h)-(f(x_{0})+Ah)}{|h|}[/mm] und
> [mm]\delta_{g}(h)=\bruch{g(x_{0}+h)-(g(x_{0})+Bh)}{|h|}[/mm]
>
> Nach Vorraussetzung gilt [mm]\delta_{f}(h) \to[/mm] 0 ;
> [mm]\delta_{g}(h) \to[/mm] 0 ,für h [mm]\to[/mm] 0.
>
> a)
> [mm]=\limes_{h\rightarrow 0} \bruch{(f+g)(x_{0}+h)-((f+g)(x_{0})+(A+B)h)}{|h|}[/mm]
>
> [mm]=\limes_{h\rightarrow 0} \delta_{f}(h)+\delta_{g}(h)[/mm]
>
> [mm]=\limes_{h\rightarrow 0} \delta_{f}(h)[/mm] +
> [mm]\limes_{h\rightarrow 0} \delta_{g}(h)=[/mm] 0
>
> [mm]\Rightarrow[/mm] f+g ist diff'bar in [mm]x_{0}[/mm] und es gilt:
> [mm]D(f+g)(x_{0})=Df(x_{0})+Dg(x_{0})[/mm]
>
> b)
> [mm]=\limes_{h\rightarrow 0} \bruch{(fg)(x_{0}+h)-((fg)(x_{0})+(A*g(x_{0})+f(x_{0})*B)h)}{|h|}[/mm]
>
> [mm]=\limes_{h\rightarrow 0} \bruch{(f(x_{0})+Ah+\delta_{f}(h)|h|)*(g(x_{0})+Bh+\delta_{g}(h)*|h|)-(f(x_{0})*g(x_{0})+g(x_{0})*Ah+f(x_{0})Bh)}{|h|}[/mm]
>
> [mm]=\limes_{h\rightarrow 0} \bruch{1}{|h|}*(Ah)(Bh)+\delta_{f}(h)(g(x_{0})+Bh+\delta_{g}(h)|h|)+\delta_{g}(|h|)(f(x_{0}+Ah)[/mm]
>
> Da gilt [mm]|Ah|\le|A||h|[/mm] und [mm]|Bh|\le|B||h|[/mm] (wegen
> Dreiecksungleichung im [mm]R^{n}[/mm] und der
> Cauchy-Schwarz-Ungleichung), ist die rechte Seite 0 für h
> [mm]\to[/mm] 0.
>
> [mm]=\limes_{h\rightarrow 0} \delta_{f}(h)*g(x_{0})+ \limes_{h\rightarrow 0} f(x_{0}+h)*\delta_{g}(h)[/mm]
>
> [mm]\Rightarrow[/mm] f*g ist diff'bar in [mm]x_{0}[/mm] und es gilt:
> [mm]D(f*g)(x_{0})=g(x_{0})*Df(x_{0})+f(x_{0})*Dg(x_{0})[/mm]
>
> c)
> [mm]\IA[/mm] : Sei n=1 und [mm]f\equiv[/mm] 1, sonst kann man
> [mm]\bruch{f}{g}=f(\bruch{1}{g})[/mm] schreiben und b) verwenden.
> Also gilt:
> [mm]=\limes_{h\rightarrow 0} \bruch{1}{|h|}*(\bruch{1}{g(x_{0}+h)}-(\bruch{1}{g(x_{0})}-\bruch{Bh}{g(x_{0})^{2}}))[/mm]
> (da [mm]g(x_{0})\not=[/mm] 0)
> [mm]=\limes_{h\rightarrow 0} \bruch{1}{|h|}*\bruch{1}{g(x_{0})*g(x_{0}+)}*(g(x_{0}-(g(x_{0}+Bh+\delta_{g}(h)|h|)+\bruch{g(x_{0}+h)}{g(x_{0})}*Bh)[/mm]
>
> [mm]=\limes_{h\rightarrow 0} \bruch{g(x_{0}+h) \delta_{f}(h) - f(x_{0}) \delta_{g}(h)}{g(x_{0})g(x_{0}+h)}[/mm]
>
> [mm]=\limes_{h\rightarrow 0} \bruch{g(x_{0}+h) \delta_{f}(h)}{g(x_{0})g(x_{0}+h)}[/mm]
> - [mm]\limes_{h\rightarrow 0} \bruch{f(x_{0}) \delta_{g}(h)}{g(x_{0})g(x_{0}+h)}=[/mm]
> 0
>
> [mm]\Rightarrow \bruch{f}{g}[/mm] ist in [mm]x_{0}[/mm] diff'bar und es gilt:
> [mm]D(\bruch{f}{g})(x_{0})=\bruch{g(x_{0})*Df(x_{0})-f(x_{0})*Dg(x_{0})}{g(x_{0})^{2}}[/mm]
>
> Dürfte doch alles soweit richtig sein, oder?
Ja, es ist alles richtig. Du solltest allerdings noch ein paar Worte spendieren, warum
[mm] f(x_0+h) \to f(x_0) [/mm] und [mm] g(x_0+h) \to g(x_0) [/mm] für h [mm] \to [/mm] 0
gilt.
FRED
>
> Gruß
> Ardbeg
|
|
|
|