www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Rechenregeln Erwartungswert
Rechenregeln Erwartungswert < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechenregeln Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:27 Sa 28.11.2009
Autor: Jodeldiplom

Hey,
ich sitze gerade dabei, diverse Erwartungswerte, Varianzen, Kovarianzen.. zu berechnen.
Dabei bin ich jetzt bei der einen Berechnung bei diesem Term ins Stocken geraten:

[mm] E[(X_{1}+X_{2}-7)^{2}] [/mm]

Wie kann ich das weiter auflösen? Das innerhalb des Erwartungswerts ausmultiplizieren?
Dann stünde da ja:
[mm] E[(X_{1})^{2}+2X_{1}X_{2}-14X_{1}-14X_{2}+(X_{2})^{2}+49] [/mm]

Omg, das meiste könnte ich ja wegen der Linearität des Erwartungswerts auseinanderziehen usw.. aber was würd ich dann mit der 49 machen?
Bin gerade ratlos... ;-)

Achja, [mm] X_{1} [/mm] und [mm] X_{2} [/mm] stellen jeweils die Augenzahl eines Würfels da, es wir also zweimal gewürfelt und beide augenzahlen addiert.
Was ich grad berechnen möchte, ist die Varianz von [mm] X_{1}+X_{2} [/mm]

Bin ich noch auf dem richtigen Weg?

        
Bezug
Rechenregeln Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 12:46 Sa 28.11.2009
Autor: Fry

Hallo!

Also der Erwartungswert einer Konstante ist gleich der Konstante selbst:
$E(a)=a$.
Kannst dir dazu vorstellen, dass du eine Zufallsvariable vorliegen hast, die nur einen Wert, nämlich a, annimmt, also gilt auch damit: $P(X=a)=1$.
Dann ist $EX=a*1=a4. Bzw anschaulich: Wenn nur ein Wert angenommen werden kann, dann wird natürlich erwarten, dass bei wiederholtem Durchführen des Zufallsexperiments im Mittel immer nur der Wert a angenommen wird ; ).

Bei dem vorliegenden Zufallsexperiments kannst du benutzen, dass [mm] $X_1$ [/mm] und [mm] $X_2$ [/mm] unabhängig voneinander sind, schließlich beeinflussen sich der erste und zweite Wurf nicht bzw die entsprechenden Augenzahlen der Würfe. Müsstest du allgemein "nachrechnen": [mm] $P(\{X_1=k\}\cap\{X_2=l\})=P(X_1=k)*P(X_2=l)$ [/mm] für alle [mm] $k,l\in \{1,...6\}$ [/mm]
Wegen der Unabhängigkeit gilt dann:
[mm] $Var(X_1+X_2)=Var X_1+Var X_2$ [/mm]

Gruß
Fry

Bezug
                
Bezug
Rechenregeln Erwartungswert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:01 Sa 28.11.2009
Autor: Jodeldiplom

Okay, dankeschön für die ausführlichen Erklärungen :)
Super, Unabhängigkeit kann ich zeigen, damit wird dann der Rechenweg für die Varianz wirklich viel "schöner" ;-)
Danke!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de