www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Rechenweg
Rechenweg < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechenweg: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:19 Fr 06.02.2009
Autor: Christopf

Verwandeln Sie den unendlichen periodischen Dezimalbruch x=0,2134134 in einem gemeinen Bruch [mm] X=\bruch{p}{q} [/mm] mit p,q [mm] \in [/mm] N

Kann mir da jemand ein Tip geben wie man da vorgeht

Danke

        
Bezug
Rechenweg: Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 Fr 06.02.2009
Autor: abakus


> Verwandeln Sie den unendlichen periodischen Dezimalbruch
> x=0,2134134 in einem gemeinen Bruch [mm]X=\bruch{p}{q}[/mm] mit p,q
> [mm]\in[/mm] N
>  
> Kann mir da jemand ein Tip geben wie man da vorgeht
>  
> Danke

Hallo,
aus [mm] x=0,2\overline{134} [/mm] = [mm] 0,213\overline{413} [/mm] folgt [mm] 1000x=213,\overline{413}. [/mm]
Berechne nun die Differenz 1000x-x und stelle die erhaltene Gleichung nach x um.
Gruß Abakus


Bezug
                
Bezug
Rechenweg: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:35 Sa 07.02.2009
Autor: Christopf

Danke erstmal für dein Tip

Ich finde zu diesen Thema nichts im Vorlesungsscript obwohl das in der Klausur dran kommt.

Ich habe ein Beisspiel in eins meiner Bücher geunden
[mm] 0,3\overline{34}*1000=334,\overline{34}+ [/mm]
[mm] 0,3\overline{34}*10=3,\overline{34}- [/mm]
also [mm] 0,3\overline{34}*990=331,0 [/mm]

Damit ist [mm] 0,3\overline{34}=\bruch{331}{990} [/mm]

Jetzt zu meiner eigentlichen Aufgabe

[mm] 0,2134\overline{134}*1000 [/mm] = 213,413
[mm] 0,2134\overline{134}*1000 [/mm] = 213,413

Die Differenzz ist = und jetz komme ich nicht mehr weiter

Bezug
                        
Bezug
Rechenweg: Antwort
Status: (Antwort) fertig Status 
Datum: 06:43 Sa 07.02.2009
Autor: glie


> Danke erstmal für dein Tip
>  
> Ich finde zu diesen Thema nichts im Vorlesungsscript obwohl
> das in der Klausur dran kommt.
>  
> Ich habe ein Beisspiel in eins meiner Bücher geunden
>  [mm]0,3\overline{34}*1000=334,\overline{34}+[/mm]
>  [mm]0,3\overline{34}*10=3,\overline{34}-[/mm]
>  also [mm]0,3\overline{34}*990=331,0[/mm]
>  
> Damit ist [mm]0,3\overline{34}=\bruch{331}{990}[/mm]
>  
> Jetzt zu meiner eigentlichen Aufgabe
>  
> [mm]0,2134\overline{134}*1000[/mm] = 213,413
>  [mm]0,2134\overline{134}*1000[/mm] = 213,413
>  
> Die Differenzz ist = und jetz komme ich nicht mehr weiter

Hallo,
ich hoffe, dir ist klar dass etwa
[mm] 0,\overline{1}=\bruch{1}{9} [/mm]
[mm] 0,\overline{37}=\bruch{37}{99} [/mm]
[mm] 0,\overline{458}=\bruch{458}{999} [/mm]
usw.

Nun zu deiner Aufgabe

[mm] 0,2\overline{134}=\bruch{1}{10}*2,\overline{134}=\bruch{1}{10}*2\bruch{134}{999}=...=\bruch{1066}{4995} [/mm]

Der Trick ist immer, das Komma so zu verschieben, dass die Periode genau hinter dem Komma beginnt und die Kommaverschiebung durch die Multiplikation mit einem geeigneten Bruch auszugleichen.

Gruß Christian

Bezug
                                
Bezug
Rechenweg: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 Sa 07.02.2009
Autor: Christopf

Was rechnest du an der Stelle ..., weil ich [mm] \bruch{134}{4995} [/mm] raus habe

Bezug
                                        
Bezug
Rechenweg: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Sa 07.02.2009
Autor: MathePower

Hallo Christopf,

> Was rechnest du an der Stelle ..., weil ich
> [mm]\bruch{134}{4995}[/mm] raus habe

[mm]0,2\overline{134}=\bruch{1}{10}*\left(2,\overline{134}\right)=\bruch{1}{10}*\left(2+\bruch{134}{999}\right)[/mm]

[mm]=\bruch{1}{5}*\left(1+\bruch{67}{999}\right)=\bruch{1}{5}*\left(\bruch{1*999+67}{999}\right)=\bruch{1}{5}*\left(\bruch{1066}{999}\right)=\bruch{1066}{4995}[/mm]


Gruss
MathePower

Bezug
                                                
Bezug
Rechenweg: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:48 Mo 23.02.2009
Autor: Christopf

Hallo

Wie kommt mann dort auf [mm] \bruch{1}{5}. [/mm] Es wird in der Klamer die 2 und die 134 gekürzt und dann mit 999 erweiter. Aber wie man von dem [mm] \bruch{1}{10} [/mm] zum [mm] \bruch{1}{5} [/mm] kommt verstehe ich nicht

Bezug
                                                        
Bezug
Rechenweg: Antwort
Status: (Antwort) fertig Status 
Datum: 00:58 Mo 23.02.2009
Autor: reverend

Hallo Christopf,

[mm] \bruch{1}{10}=\bruch{1}{2*5} [/mm]

Aus der Klammer wird auch eine 2 (im Zähler) herausgezogen und gegen die 2 im Nenner gekürzt. Darum wird in der Klammer aus der 2 eine 1 und aus der 134 im Zähler des Bruchs die 67.

Grüße
reverend

Bezug
                
Bezug
Rechenweg: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:53 Mi 18.03.2009
Autor: abakus


> > Verwandeln Sie den unendlichen periodischen Dezimalbruch
> > x=0,2134134 in einem gemeinen Bruch [mm]X=\bruch{p}{q}[/mm] mit p,q
> > [mm]\in[/mm] N
>  >  
> > Kann mir da jemand ein Tip geben wie man da vorgeht
>  >  
> > Danke
> Hallo,
>  aus [mm]x=0,2\overline{134}[/mm] = [mm]0,213\overline{413}[/mm] folgt
> [mm]1000x=213,\overline{413}.[/mm]
>  Berechne nun die Differenz 1000x-x und stelle die
> erhaltene Gleichung nach x um.
>  Gruß Abakus
>  

Hallo Christopf,
was war hier missverständlich???
1000x=213,413431431....
x=0,21341341...
1000x-x=213,2000000000....
999x=213,2
[mm] x=\bruch{213,2}{999}=\bruch{1066}{4995} [/mm]
Gruß Abakus


Bezug
        
Bezug
Rechenweg: Zusatzfrage
Status: (Frage) beantwortet Status 
Datum: 12:43 Mi 18.03.2009
Autor: Christopf

Darf man die Dezimalzahl auch so in ein Bruch umwandeln?

0,2134134

Rechenweg: - 0,2134134*1000=213,4134
           - 213,4134-0,4134=213
           - [mm] \bruch{213}{1000-1}=\bruch{213}{999}= [/mm]
             [mm] \bruch{71}{333} [/mm]

Bezug
                
Bezug
Rechenweg: Antwort
Status: (Antwort) fertig Status 
Datum: 13:40 Mi 18.03.2009
Autor: angela.h.b.


> Darf man die Dezimalzahl auch so in ein Bruch umwandeln?
>  
> 0,2134134
>  
> Rechenweg: - 0,2134134*1000=213,4134
>             - 213,4134-0,4134=213
>             - [mm]\bruch{213}{1000-1}=\bruch{213}{999}=[/mm]
> [mm]\bruch{71}{333}[/mm]  

Hallo,

nein, wenn Du für den Bruch den Taschenrechner bemühst, dann siehst Du, daß es nicht stimmt.

Du willst  [mm] x=0.2\overline{134} [/mm] in einen Bruch umwandeln.

Es ist 10 [mm] x=2.\overline{134} [/mm]    (x wurde so multipliziert, daß die Periode hinter dem Komma beginnt.)

Die Periode hat die Länge 3, ich multipliziere mit [mm] 10^3 [/mm] und bekomme

[mm] 10000x=2134.\overline{134}. [/mm]

Nun geht's los.

[mm] 9990x=10000x-10x=2134.\overline{134}-2.\overline{134} [/mm] =2132

==> [mm] x=\bruch{2132}{9990} [/mm] , man ahnt, daß man noch kürzen kann, wenn man mag.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de