www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Rechnen in endlichen Körpern
Rechnen in endlichen Körpern < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechnen in endlichen Körpern: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 17:01 So 31.01.2010
Autor: tasjasofie

Aufgabe
A = [mm] \pmat{ 1 & 3 \\ 2 & 5 } \in M(2,2,\IF_{7}) [/mm]

b = [mm] \vektor{2 \\ 6} [/mm]


hallöchen,
ich lerne gerade für meine Klausur und muss dafür in endlichen Körpern rechnen können.

Die negativen Zahlen wären dann ja: (Formel: -a = p-a)
a   0 1 2 3 4 5 6
-a  0 6 5 4 3 2 1

Nun bin ich dabei das LGS zu lösen:
[mm] \pmat{ 1 & 3 & /2 \\ 0 & 6 & /2 } [/mm]

also schreibe ich zweite Zeile:
6y = 2
Aber nun weiß ich nicht wie ich das lösen soll????
Normalerweise wäre das ja 1/3, aber was ist das nun im [mm] IF_{7} [/mm] ????

Es wäre echt toll, wenn mir jemand helfen könnte!!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Rechnen in endlichen Körpern: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 So 31.01.2010
Autor: schachuzipus

Hallo,

> A = [mm]\pmat{ 1 & 3 \\ 2 & 5 } \in M(2,2,\IF_{7})[/mm]
>  
> b = [mm]\vektor{2 \\ 6}[/mm]
>  
>
> hallöchen,
>  ich lerne gerade für meine Klausur und muss dafür in
> endlichen Körpern rechnen können.
>  
> Die negativen Zahlen wären dann ja: (Formel: -a = p-a)
>  a   0 1 2 3 4 5 6
> -a  0 6 5 4 3 2 1
>  
> Nun bin ich dabei das LGS zu lösen:
>  [mm]\pmat{ 1 & 3 & /2 \\ 0 & 6 & /2 }[/mm] [ok]
>  
> also schreibe ich zweite Zeile:
>  6y = 2 [ok]
>  Aber nun weiß ich nicht wie ich das lösen soll????
>  Normalerweise wäre das ja 1/3, aber was ist das nun im
> [mm]IF_{7}[/mm] ????

Da 2 und 7 teilerfremd sind, kannst du die Gleichung (Kongruenz) durch 2 kürzen und erhältst leichter zu rechnen:

$3y \ [mm] \equiv [/mm] \ 1 \ [mm] \mod{7}$ [/mm]

Hier willst du ja linkerhand auf [mm] $1\cdot{}y=y$ [/mm] kommen, musst also mit dem multiplikativ Inversen von 3 modulo 7 multiplizeren.

Das kannst du systematisch mit dem euklidischen Algorithmus berechnen, hier bei dem doch recht kleinen Modul 7 durch Hinsehen.

Es ist [mm] $3\cdot{}5=15 [/mm] \ [mm] \equiv [/mm] \ [mm] \red{1} [/mm] \ [mm] \mod{7}$ [/mm]

Denn [mm] $15=2\cdot{}7+\red{1}$ [/mm]

Das multiplikativ Inverse von $3$ modulo 7 ist also 5.

Das nun beiderseits dranmultiplizieren

Also $3y \ [mm] \equiv [/mm] \ 1 \ [mm] \mod{7}$ [/mm]

[mm] $\Rightarrow 3\cdot{}5\cdot{}y=15y [/mm] \ [mm] \equiv 1\cdot{}y=\blue{y} [/mm] \ [mm] \equiv [/mm] \ [mm] 1\cdot{}5\blue{=5} [/mm] \ [mm] \mod{7}$ [/mm]

Lösung modulo 7 ist also $y=5$

Probe: [mm] $6\cdot{}5=30 [/mm] \ [mm] \equiv [/mm] 2 \ [mm] \mod{7}$ [/mm]

Denn [mm] $30=4\cdot{}7+2$ [/mm]

>  
> Es wäre echt toll, wenn mir jemand helfen könnte!!!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  

Gruß

schachuzipus

Bezug
                
Bezug
Rechnen in endlichen Körpern: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:27 So 31.01.2010
Autor: tasjasofie

hey schachuzipus,
danke für die schnelle antwort.
ich habe das zwar verstanden, finde aber das es ja wenn man das für den ganzen IF 7 ausrechnet anstrengend und zwit aufwenig.
Du hast etwas von einem euklidischen Algorithmus geschrieben, das sagt mir jedoch nichts, kannst du mir das damit mal erklären?


Bezug
                        
Bezug
Rechnen in endlichen Körpern: Antwort
Status: (Antwort) fertig Status 
Datum: 17:46 So 31.01.2010
Autor: SEcki


>  ich habe das zwar verstanden, finde aber das es ja wenn
> man das für den ganzen IF 7 ausrechnet anstrengend und
> zwit aufwenig.

Eigentlich dauert es nicht land: man hat [m]1*1=1[/m], [m]6=7-1=-1[/m] im Körper. Da dies die beiden einzigen Zahlen mit [m]x^2=1[/m] sind, kann man nun für 2 das Inverse suchen - 3, nein, 4 - passt schon, da [m]2*4=8=1[/m]. Dann bleibt zwangsläufig [m]3*5=1[/m] im Körper. Alle Inversen gefunden.

>  Du hast etwas von einem euklidischen Algorithmus
> geschrieben, das sagt mir jedoch nichts, kannst du mir das
> damit mal erklären?

Ein bisschen viel für eine dirkete Erklärung, der Algorithmus wird zB []im englischen Wiki ganz gut beschrieben. Damit kannst du das systemtaisch lösen.

Bezug
                                
Bezug
Rechnen in endlichen Körpern: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:57 So 31.01.2010
Autor: tasjasofie

alles klar,
vielen dank für eure hilfe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de