www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Rechnen mit Matrizen
Rechnen mit Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechnen mit Matrizen: Bew. durch vollst. Induktion
Status: (Frage) beantwortet Status 
Datum: 19:02 Mi 14.12.2005
Autor: oeli1985

Aufgabe
Sei K ein Körper, n [mm] \in \IN [/mm] und A = ( [mm] a_{ij}) \in [/mm] M(nxn, K) die Matrix mit

[mm] a_{ij}=\begin{cases} 1, & \mbox{für } j=i+1 \\ 0, & \mbox{sonst } \end{cases} [/mm]

(i) Berechnen sie A² und A³
(ii) Formulieren sie eine Vermutung für den Wert von

[mm] A^{k} [/mm] := A [mm] \*A \*... \*A [/mm] (mit k-Faktoren)

(mit k [mm] \in \IN) [/mm] und beweisen sie diese mittels vollständiger Induktion nach k.

zu (i)

( [mm] b_{ij}) [/mm] = A²

[mm] b_{ij}=\begin{cases} 1, & \mbox{für } j=i+2 \\ 0, & \mbox{sonst } \end{cases} [/mm]

( [mm] c_{ij}) [/mm] = A³

[mm] c_{ij}=\begin{cases} 1, & \mbox{für } j=i+3 \\ 0, & \mbox{sonst } \end{cases} [/mm]

Sind meine Lösungen dazu richtig?

zu (ii)

Vermutung: [mm] (d_{ij}) [/mm] :=  [mm] A^{k} [/mm] dann:

[mm] d_{ij}=\begin{cases} 1, & \mbox{für } j=i+k \\ 0, & \mbox{sonst } \end{cases} [/mm]

z.zg.:
1. [mm] (d_{ii+k}) [/mm] =  [mm] \summe_{m=1}^{k} (a_{ii+m})^{m} [/mm] = 1
2. Für alle anderen j ist [mm] a_{ij} [/mm] = 0

(wobei i = 1, ... ,n)

Problem:

Zu 1. habe ich alles gezeigt, aber ich weiss nicht, wie ich alle anderen [mm] a_{ij} [/mm] als Summe ausdrücken soll!?

Ich schaffe bisher lediglich entweder eine Spalte oder eine Diagonale der Matrix auszudrücken.

Wer kann mir helfen? Am liebsten wär mir, wenn mir jemand entsprechende Summe angibt und mir dazu erklären kann wieso diese Summe alles ausdrückt. Ich habe nämlich wirklich keine Idee mehr.

DANKE schon mal.

        
Bezug
Rechnen mit Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:55 Do 15.12.2005
Autor: angela.h.b.


> Sei K ein Körper, n [mm]\in \IN[/mm] und A = ( [mm]a_{ij}) \in[/mm] M(nxn, K)
> die Matrix mit
>  
> [mm]a_{ij}=\begin{cases} 1, & \mbox{für } j=i+1 \\ 0, & \mbox{sonst } \end{cases}[/mm]
>  
> (i) Berechnen sie A² und A³
>  (ii) Formulieren sie eine Vermutung für den Wert von
>  
> [mm]A^{k}[/mm] := A [mm]\*A \*... \*A[/mm] (mit k-Faktoren)
>  
> (mit k [mm]\in \IN)[/mm] und beweisen sie diese mittels
> vollständiger Induktion nach k.
>  zu (i)
>  

Hallo,

Deine Ergebnisse für  [mm] A^2 [/mm] und [mm] A^3 [/mm] sind richtig.

Auch die Vermutung für k stimmt, ich bürste die jetzt etwas, damit man es bei der Induktion leichter hat.

>  
> zu (ii)
>  

Vermutung: [mm] A^{k}:=(a_{ij}^{(k)}) [/mm]

mit [mm] a_{ij}^{(k)}=\begin{cases} 1, & \mbox{für } j=i+k \\ 0, & \mbox{sonst } \end{cases}[/mm].

k  [mm] \to [/mm] k+1:

Es ist [mm] (a_{ij}^{(k+1)}) [/mm] = [mm] A^{k+1} [/mm] = [mm] AA^k [/mm] = [mm] (a_{ij}^{(1)})(a_{ij}^{(k)}) [/mm] = ( [mm] \summe_{l=1}^{n}a_{il}^{(1)}a_{lj}^{(k)}) [/mm]

Nun muß man bedenken, daß [mm] a_{il}^{(1)} [/mm] immer =0 ist, außer für l=i+1, und [mm] a_{ij}^{(k)} [/mm] ist nach Induktionsvoraussetzung immer =0 außer für l=j-k. Also

ist für [mm] i+1\not=j-k [/mm]
[mm] a_{ij}^{(k+1)}:= \summe_{l=1}^{n}a_{il}^{(1)}a_{lj}^{(k)}=0 [/mm]

und für i+1=j-k  <==> i+(k+1)=j
[mm] a_{ij}^{(k+1)}=a_{i,(i+(k+1))}^{(k+1)}= \summe_{l=1}^{n}a_{il}^{(1)}a_{l,(i+(k+1))}^{(k)}=... [/mm]

(es bleibt nur der Summand für l=i+1, alles andere wird =0)

[mm] ...=a_{i,(i+1)}^{(1)}a_{i+1,(i+(k+1))}^{(k)}=1 [/mm]

Gruß v. Angela


Bezug
                
Bezug
Rechnen mit Matrizen: Super
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:44 Do 15.12.2005
Autor: oeli1985

Jetzt ist alles klar, DANKESCHÖN!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de