www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Rechnen von Vektoren
Rechnen von Vektoren < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechnen von Vektoren: Vektorrechnung
Status: (Frage) beantwortet Status 
Datum: 15:25 Di 29.01.2013
Autor: Benemin

Aufgabe
[mm] \vektor{1 \\ x\\ x^2} [/mm]  das ist mein vektor x
[mm] \vektor{1 \\ y \\ y^2} [/mm] das ist mein vektor y

So jetzt soll ich [mm] x^t [/mm] *y * x rechnen

Hey an alle :)
Ich habe eine Frage zur Vektorrechnung


[mm] x^t [/mm] * y bekomme ich dies raus [mm] (1+x^2*y+ x^2*y^2) [/mm] raus ,dass soll ich aber jetzt noch * vektor Y nehmen.
Und jetzt meine Frage...darf ich das ergebnis mal dem vektor Y rechnen,weil im neuen vektor ja lauter + sind,oder ist es egal?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Rechnen von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 15:31 Di 29.01.2013
Autor: schachuzipus

Hallo Benemin und erstmal herzlich [willkommenmr],


> [mm]\vektor{1 \\ x\\ x^2}[/mm]  das ist mein vektor x
>  [mm]\vektor{1 \\ y \\ y^2}[/mm] das ist mein vektor y
>  
> So jetzt soll ich [mm]x^t[/mm] *y * x rechnen
>  Hey an alle :)
>  Ich habe eine Frage zur Vektorrechnung
>  
>
> [mm]x^t[/mm] * y bekomme ich dies raus [mm](1+x^{\red{2}}*y+ x^2*y^2)[/mm] raus

Das Quadrat ist zuviel!

> ,dass
> soll ich aber jetzt noch * vektor Y nehmen.
>  Und jetzt meine Frage...darf ich das ergebnis mal dem
> vektor Y rechnen,

Das soll doch "mal" dem Vektor x gerechnet werden, es soll doch [mm]x^t\cdot{}y\cdot{}x[/mm] berechnet werden ..

> weil im neuen vektor ja lauter + sind,oder
> ist es egal?

Der "neue" Vektor [mm]x^t\cdot{}y[/mm] ist ein Skalar, also eine Zahl.

Die kannst du doch gem. [mm]\lambda\cdot{}\vektor{x_1\\ x_2\\ x_3}=\vektor{\lambda\cdot{}x_1\\ \lambda\cdot{}x_2\\ \lambda\cdot{}x_3}[/mm] ganz bequem mit dem Vektor x verrechnen ...


>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  

Gruß

schachuzipus


Bezug
                
Bezug
Rechnen von Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:36 Di 29.01.2013
Autor: Benemin

Also wäre die ENDlösung dann,


[mm] (1+x^2*y+x^4*y^2) [/mm] ???

Bezug
                        
Bezug
Rechnen von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 Di 29.01.2013
Autor: fred97


> Also wäre die ENDlösung dann,
>  
>
> [mm](1+x^2*y+x^4*y^2)[/mm] ???

1. "Endlösung" ist kein schönes Wort: http://de.wikipedia.org/wiki/Endlösung_der_Judenfrage

2. Dein Ergebnis ist falsch.

     Setzen wir [mm] a:=x^t*y. [/mm]

a ist ein Skalar. Damit ist

     [mm] x^t*y*x=a*x [/mm]

ein Vektor.

FRED


Bezug
                                
Bezug
Rechnen von Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 Di 29.01.2013
Autor: Benemin

Tut mir Leid für das Wort  :(

Also fred 97

[mm] x^t*y [/mm] = a

a = [mm] (1+x*y+x^2*y^2) [/mm]

So nun : a* vektor x

[mm] (1+x*y+x^2*y^2) [/mm] * [mm] \vektor{1 \\ x \\ x^2} [/mm]

Ergebnis:
[mm] (1+x^2*y+x^4*y^2 [/mm]

oder verstehe ich jetzt was ganz falsches :( ?

Bezug
                                        
Bezug
Rechnen von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 15:55 Di 29.01.2013
Autor: fred97


> Tut mir Leid für das Wort  :(
>  
> Also fred 97
>  
> [mm]x^t*y[/mm] = a
>  
> a = [mm](1+x*y+x^2*y^2)[/mm]
>  
> So nun : a* vektor x
>  
> [mm](1+x*y+x^2*y^2)[/mm] * [mm]\vektor{1 \\ x \\ x^2}[/mm]
>  
> Ergebnis:
>  [mm](1+x^2*y+x^4*y^2[/mm]
>  
> oder verstehe ich jetzt was ganz falsches :( ?


[mm] $a*\vektor{1 \\ x \\ x^2}= \vektor{a \\ a*x \\ a*x^2}$ [/mm]

FRED


Bezug
                                                
Bezug
Rechnen von Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:02 Di 29.01.2013
Autor: Benemin

(1 + y + [mm] y^2) [/mm] als Ergebis ?

Bezug
                                                        
Bezug
Rechnen von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Di 29.01.2013
Autor: fred97


> (1 + y + [mm]y^2)[/mm] als Ergebis ?

Nein. Wie oft noch: raus kommt ein Vektor:




$ [mm] a\cdot{}\vektor{1 \\ x \\ x^2}= \vektor{a \\ a\cdot{}x \\ a\cdot{}x^2} [/mm] $

FRED


Bezug
                                                                
Bezug
Rechnen von Vektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:04 Di 29.01.2013
Autor: Benemin

Ist ja gut..danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de