www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Reelle Folgen Grenzwert
Reelle Folgen Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reelle Folgen Grenzwert: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:08 So 22.11.2009
Autor: Bleistiftkauer

Aufgabe
Es sei [mm] (x_{n})_{n} [/mm] eine reelle Folge mit Grenzwert x und k [mm] \to n_{k} [/mm] eine injektive Abbildung von [mm] \IN [/mm] nach [mm] \IN. [/mm]
1. Zeigen Sie, dass für alle N [mm] \in \IN [/mm] ein K [mm] \in \IN [/mm] existiert, sodass [mm] n_{k} \ge [/mm] N für alle k [mm] \ge [/mm] K.
2. Zeigen Sie, dass die Folge [mm] (x_{n_{k}})_{k} [/mm] ebenfalls gegen x konvergiert.

Leider verstehe ich noch nicht mal, was mir erstens sagen soll.
vllt kann mir jemand erklären, was das bedeuten.
dann fällts vllt auch mit dem beweisen leichter.

        
Bezug
Reelle Folgen Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 16:30 So 22.11.2009
Autor: steppenhahn

Hallo!

> Es sei [mm](x_{n})_{n}[/mm] eine reelle Folge mit Grenzwert x und k
> [mm]\to n_{k}[/mm] eine injektive Abbildung von [mm]\IN[/mm] nach [mm]\IN.[/mm]
>  1. Zeigen Sie, dass für alle N [mm]\in \IN[/mm] ein K [mm]\in \IN[/mm]
> existiert, sodass [mm]n_{k} \ge[/mm] N für alle k [mm]\ge[/mm] K.
>  2. Zeigen Sie, dass die Folge [mm](x_{n_{k}})_{k}[/mm] ebenfalls
> gegen x konvergiert.
>  Leider verstehe ich noch nicht mal, was mir erstens sagen
> soll.
>  vllt kann mir jemand erklären, was das bedeuten.
> dann fällts vllt auch mit dem beweisen leichter.

Du verstehst ja die Aussage, dass [mm] $n_{k}:\IN\to\IN$ [/mm] eine injektive Abbildung sein soll. Gewissermaßen handelt es sich bei [mm] (a_{n_{k}})_{k\in\IN} [/mm] nur um eine Teilfolge von [mm] (a_{n})_{n\in\IN}, [/mm] allerdings kann es passieren, dass bei dieser Teilfolge das 10. Glied von [mm] a_{n} [/mm] als erstes kommt, dann das 1000., dann das 1., und vielleicht taucht das 25. Glied von [mm] a_{n} [/mm] gar nicht in der Teilfolge [mm] a_{n_{k}} [/mm] auf. Das solltest du dir bewusst machen.

Die Aussage 1), die du beweisen sollst, hilft dir dann, die Aussage 2), die der Konvergenz, zu beweisen.

Aussage 1) lautet: "Zeigen Sie, dass für alle N [mm]\in \IN[/mm] ein K [mm]\in \IN[/mm] existiert, sodass [mm]n_{k} \ge[/mm] N für alle k [mm]\ge[/mm] K."

Es geht bei dieser Aussage darum: [mm] n_{k} [/mm] liefert ja den Index der Folge [mm] a_{n}. [/mm] Wenn du dir nun einen bestimmten Index der Folge [mm] a_{n} [/mm] auswählst, zum Beispiel den Index N (d.h. eigentlich suchst du dir das N-te Folgenglied der Folge [mm] a_{n} [/mm] aus), dann soll es auch irgendein K geben, sodass nach [mm] n_{K} [/mm] die injektive Abbildung nur noch Indizes der Folge [mm] a_{n} [/mm] ausspuckt, die größer als N sind.

Ein Beispiel hilft hier glaub ich am meisten:

Stell' dir vor, unsere injektive Abbildung würde so aussehen:

1 -> 5
2 -> 1
3 -> 8
4 -> 3
5 -> 9
6 -> 11
7 -> 4
(und ab hier wird 8,9,... nur noch Zahlen größer als 12 zugewiesen!)

usw. Nun wählst du entsprechend der Aufgabenstellung N = 3. Wir müssen nun zeigen: Es gibt ein K, sodass die Abbildung [mm] n_{k} [/mm] für alle k [mm] \ge [/mm] K nur noch Werte größergleich als 3 ausspuckt [mm] (n_{k}\ge [/mm] N).
Und wir können an der obigen Abbildung sehen: Ja, so ein K gibt es, und zwar ist K = 4. Denn ab K = 4 ist jedes Bild der Abbildung [mm] n_{k} [/mm] größergleich 3.

Wir könnten auch N = 11 wählen. Dann gibt es auch so ein K, sodass die Abbildung [mm] n_{k} [/mm] für alle k > K nur noch Werte größergleich als 11 ausspuckt, nämlich hier in unserem Fall ist K = 8 (nach meiner Definition oben). Denn ab  K = 8 ist jedes Bild der Abbildung [mm] n_{k} [/mm] größergleich 11.

Das sollst du nun allgemein für jede injektive Abbildung nachweisen.

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de