www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Reelles Integral -> Kreisinteg
Reelles Integral -> Kreisinteg < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reelles Integral -> Kreisinteg: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:15 Mi 22.10.2008
Autor: HansPhysikus

Aufgabe
[Dateianhang nicht öffentlich]

Hallo,

ich habe obige Aufgabe schon komplett durchgerechnet und komme auch auf das richtige Ergebnis.

Einen Teil des Hinweises habe ich allerdings noch nicht verstanden: Warum integriert man nach der Substitution über einen den Kreisweg [mm] \gamme [/mm] um 0 mit Radius 1? (Klar, damit man das Residuum zur Berechnung benutzen kann, aber warum ändert sich der Integrationsweg gerade so geschickt?)

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Reelles Integral -> Kreisinteg: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 Mi 22.10.2008
Autor: fred97

Um den Residuensatz anwenden zu können.

Das macht man oft: reelle Integrale mit Hilfe des Residuensatzes berechnen.

FRED

Bezug
                
Bezug
Reelles Integral -> Kreisinteg: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:21 Mi 22.10.2008
Autor: HansPhysikus

Hallo Fred,

danke für deine antwort, aber das war mir klar, dass man das macht, um den Residuensatz anwenden zu können.

Aber warum ändert sich das Integral nach/duch der/die Substitution so geschickt?
Warum ändert man die Integrationsgrenzen nicht einfach so, wie man es immer bei Integration durch Substitution macht?

LG,
HP

Bezug
                        
Bezug
Reelles Integral -> Kreisinteg: Weg zerlegen
Status: (Antwort) fertig Status 
Datum: 17:39 Mi 22.10.2008
Autor: Infinit

Hallo HP,
den Vorteil des schnellen Ausrechnens eines Wegintegrals mit Hilfe des Residuensatzes hast Du ja erkannt, streng genommen muss man aber noch zeigen, dass der Weganteil, den man hinzugefügt hat, um eine geschlossene Kurve zu bekommen, nichts zum Integral beiträgt. Dies ist bei Deiner Aufgabe der Fall und deswegen kann man auch so vorgehen, aber es wäre schön gewesen, wenn man in der Aufgabe darauf hingewiesen hätte.
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de