www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Reflixive Relation
Reflixive Relation < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reflixive Relation: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 19:30 Fr 06.11.2009
Autor: Christoph87

Aufgabe
Richtig oder falsch? Für reflixive Relationen [mm]R[/mm] gilt [mm]R \subseteq R \circ R[/mm]. Begründung!

Hallo,
ich kenne Relationen leider nur definiert in oder zwischen 2 Mengen. Fehlt hier eine Angabe in der Art "Sei R eine Relation in M"?

Ich gehe mal davon aus, dass so eine Formulierung fehlt, dann würde folgendes Gelten:

Beweis:
[mm]R \circ R := \{(a,c) \in M \times M | \exists b \in M : aRb \wedge bRc\} \gdw \{(a,c) \in M \times M | aRc\} = R[/mm].
b gewählt als c. cRc ist immer wahr, wegen reflexiv.

So hätte ich das verstanden. Oder kann man das auch ohne eine Menge machen?

Mfg,
Christoph

        
Bezug
Reflixive Relation: Antwort
Status: (Antwort) fertig Status 
Datum: 02:53 Sa 07.11.2009
Autor: MatthiasKr

Hallo,

> Richtig oder falsch? Für reflixive Relationen [mm]R[/mm] gilt [mm]R \subseteq R \circ R[/mm].

es heisst eigentlich reflexiv. reflixiv hoert sich irgendwie wie verflixt an... ;-)

> Begründung!
>  Hallo,
>  ich kenne Relationen leider nur definiert in oder zwischen
> 2 Mengen. Fehlt hier eine Angabe in der Art "Sei R eine
> Relation in M"?
>  
> Ich gehe mal davon aus, dass so eine Formulierung fehlt,
> dann würde folgendes Gelten:
>  
> Beweis:
>  [mm]R \circ R := \{(a,c) \in M \times M | \exists b \in M : aRb \wedge bRc\} \gdw \{(a,c) \in M \times M | aRc\} = R[/mm].
>  
> b gewählt als c. cRc ist immer wahr, wegen reflexiv.
>

dass du mit mengen argumentierst, ist gut und wohl auch schwer vermeidbar. Ich denke, dein grundgedanke ist richtig, allerdings stoert mich das aequivalenzzeichen in deinem beweis. du sollst eine inklusion zeigen (A teilmenge von B), das ist uebersetzt:

[mm] (a,b)\in R \Rightarrow (a,b)\in R\circ R[/mm]

also nicht die aequivalenz, denn die gilt vermutlich gar nicht.

> So hätte ich das verstanden. Oder kann man das auch ohne
> eine Menge machen?
>  

gruss
Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de