www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Regelfunktion approximieren
Regelfunktion approximieren < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regelfunktion approximieren: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:48 Do 19.05.2011
Autor: Theoretix

Aufgabe
Beweisen Sie, dass die Funktion [mm] f:[-1,1]\to\IR [/mm] für [mm] x\in[-1,1] [/mm] definiert durch

[mm] f(x):=\begin{cases} \frac{1}{n+1}, & \mbox{für } x\in[-\frac{1}{n},-\frac{1}{n+1})\cup (\frac{1}{n+1},\frac{1}{n}] n\in\IN \mbox{ } \\ 0, & \mbox{für } x=0 \mbox{ } \end{cases} [/mm]

durch die Treppenfunktion:

[mm] \varphi_i(x):=\begin{cases} \frac{1}{i+2}, & \mbox{für } x\in[-\frac{1}{i},-\frac{1}{i+1})\cup (\frac{1}{i+1},\frac{1}{i}] i\in[1,...,k] \mbox{ } \\ 1, & \mbox{für } x=0 \mbox{ } \end{cases} [/mm]

approximiert wird, indem sie zeigen, dass die Treppenfunktion in der Supremums Norm auf dem Intervall [-1,1] gegen f konvergiert für [mm] \limes_{n\rightarrow\infty}, [/mm] also dass gilt:

[mm] \limes_{n\rightarrow\infty}\vert\vert\varphi_i(x)-f(x)\vert\vert_{L^{\infty}(-1,1)}=0 [/mm]


Hallo zusammen,

die Treppenfunktion [mm] \varphi_i(x) [/mm] ist von mir so definiert, ich hoffe das diese soweit in ordnung ist? Da bei [mm] \varphi_i [/mm] das i nur eine endliche Zahl ist im Gegensatz zu f, wo n gegen unendlich geht, müsste doch [mm] \varphi [/mm] diejenige Treppenfunktion sein, welche f approximiert?

Wahrscheinlich ist es sehr einfach, aber wie genau kann ich mathematisch korrekt zeigen, dass die Treppenfunktion [mm] \varphi_i [/mm] gegen f in den Supremumsnorm konvergiert? Die Supremumsnorm greift sich doch den maximalen Funktionswert in dem gegebenen Intervall raus, oder? D.h. in diesem Fall erreicht man doch den maximalen Funktionswert von f, wenn x=1, dann ist x aus dem Intervall für n=1 und damit sollte für den Funktionswert gelten: [mm] f(1)=\frac{1}{1+2}=\frac{1}{3}, [/mm] also ist der maximale Funktionswert auf dem Intervall [mm] \frac{1}{3}...das [/mm] ist doch aber bei meiner von mir definierten Treppenfunktion [mm] \varphi_i [/mm] auch der Fall, oder?

Ich hätte dann [mm] \vert\vert\frac{1}{3}-\frac{1}{3}\vert\vert [/mm] ?? Irgendwas scheint da überhaupt nicht zu stimmen, denn der Grenzwert würde hier ja keine Rolle mehr spielen??

Bitte um Hilfe, würde mir sehr helfen!

Grüße

        
Bezug
Regelfunktion approximieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:03 Do 19.05.2011
Autor: Rauchzart

Hi,
in der Supremumsnorm konvergieren die sicher nicht, ganz unten steht bei dir aber auch die [mm] L^{\infty} [/mm] Norm. Das ist was anderes. Außerdem würde ich annehmen, dass die Folge [mm] \varphi_k [/mm] und nicht [mm] \varphi_i [/mm] lauten muss.
Schlag das mal nochmal nach.

Bezug
                
Bezug
Regelfunktion approximieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:27 Do 19.05.2011
Autor: Theoretix

Bei mir im Skript steht:

[mm] \vert\vert f\vert\vert_{L^{\infty(a,b)}}:=sup_{x\in(a,b)}\vert f(x)\vert, [/mm]

für mich ist das die Supremumsnorm?
Ok, du hast wohl recht, dass man die Stufenfunktion mit [mm] \varphi_k [/mm] bezeichnen müsste, aber wie zeige ich denn nun, dass diese gegen f konvergiert?

Gruß

Bezug
        
Bezug
Regelfunktion approximieren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Sa 21.05.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de