www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Regelfunktionen
Regelfunktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regelfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:41 Sa 28.04.2007
Autor: Thomas85

Hallo, ich würde gerne wissen welche strategien es allgemein gibt um zu zeigen dass es sich bei einer Funktion um eine Regelfunktion handelt.
Ist es der standard weg über das [mm] \varepsilon \delta [/mm] kriterium zu zeigen dass für alle punkte [mm] x_0 [/mm] gilt: für alle punkte [mm] x_1 x_2 [/mm] im intervall [mm] (x_0 [/mm] - [mm] \delta, x_0) gilt:|f(x_1) [/mm] - [mm] f(x_2) [/mm] | < epsilon ? und genauso für [mm] (x_0, x_0 [/mm] + delta) ?
kann man dort auch mit dem folgenkriterium argumentieren `?
ich sitze etwas ratlos vor meinen aufgaben...

mfg thomas


        
Bezug
Regelfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:49 Sa 28.04.2007
Autor: Hund

Hallo,

eine beschränkte Funktion auf kompakten Intervall ist Regelfunktion genau dann, wenn die einseitigen Limiten in jedem Punkt exestieren. In Endpunkten natürlich nur einer.

Ich hoffe, es hat dir geholfen.

Gruß
Hund

Bezug
                
Bezug
Regelfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:57 Sa 28.04.2007
Autor: Thomas85

ok, danke
eine regelfunktion muss aber nicht in jedem punkt rechts oder linksstetig sein oder?
Die Funktion:

___________'____________
          [mm] x_0 [/mm]
wäre auch üb erall Regelfunktion obwohl sie an der Stelle [mm] x_0 [/mm] weder rechts noch linksstetig ist oder?

mfg

Bezug
                        
Bezug
Regelfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 Sa 28.04.2007
Autor: Hund

Hallo,

was meinst du mit rechtseitig und linksseitig sein?
Bei deiner Funktion exestieren ja die einseitigen Limiten in jedem Punkt, also ist es auch eine Regelfunktion.

Ich hoffe, es hat dir geholfen.

Gruß
Hund

Bezug
                                
Bezug
Regelfunktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:12 Sa 28.04.2007
Autor: Thomas85

ich meinte dass ja in dem punkt weder von rechts noch von links gilt:

lim(x -> [mm] x_0) [/mm] f(x) = [mm] f(x_0) [/mm]
aber das muss ja bei einer regelfunktion offenbar auch garnicht gelten, der rechtsseitige und linksseitige grenzwert existiert ja und entsprihcht hier jeweils der konstanten (richtig??)
vielen dank für deine hilfe

mfg

Bezug
                                        
Bezug
Regelfunktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:14 Sa 28.04.2007
Autor: Hund

Genau!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de