www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Regression
Regression < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regression: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:50 Fr 31.08.2012
Autor: HansaAbi

Aufgabe
Eine Funktion f ist gegeben durch die Gleichung
f(x)=a*x²+b+c/x² (x Element reeller Zahlen, x ungleich 0, a,b,c Element reeller Zahlen).
Stellen Sie ein Gleichungssystem für die Bestimmung der Parameter a,b und c so auf, dass folgende Bedingungen erfüllt sind:
- f hat an der Stelle x=2 eine Nullstelle
- die Tangente an den Graphen von f im Punkt (-4/0) schneidet die y-Achse im Punkt S(0/6).
Berechnen Sie die Werte von a, b und c.

Kann mir jemand bei dieser Frage helfen?
Ich weiß nicht wie ich die Tangente mit in das Gleichungssystem nehmen soll.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Regression: Punkt und Steigung
Status: (Antwort) fertig Status 
Datum: 18:55 Fr 31.08.2012
Autor: Loddar

Hallo HansaAbi,

[willkommenmr] !!


Die Hinweise mit der Tangente liefern zum einen einen Punkt des gesuchten Funktionsgraphen mit [mm] $\left( \ -4 \ | \ 0 \ \right)$ [/mm] .
Damit gilt also: $f(-4) \ = \ ... \ = \ 0$ .

Mit dem anderen gegebenen Punkt kannst Du die Steigung der Tangente [mm] $m_t$ [/mm] ermitteln und kennst damit auch die Steigung des Funktionsgraphen an dieser Stelle: $f'(-4) \ = \ ... \ = \ [mm] m_t [/mm] \ = \ ...$ .


Gruß
Loddar


Bezug
                
Bezug
Regression: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:09 Fr 31.08.2012
Autor: HansaAbi

OK, also kann ich in das Gleichungssystem die Eigenschaften
f(2)=0
f(-4)=0
f1(-4)=c/32-8*a
Wenn ich die Eigenschaften aber in den CAS eingebe, kommt nicht der exakte Wert raus.
Wie kann ich das denn mit dem Schnittpunkt an der y-Achse reinbringen?
Danke schon mal für die Hilfe!

Bezug
                        
Bezug
Regression: Antwort
Status: (Antwort) fertig Status 
Datum: 00:49 Sa 01.09.2012
Autor: schachuzipus

Hallo HansAbi,


> OK, also kann ich in das Gleichungssystem die
> Eigenschaften
>  f(2)=0
>  f(-4)=0
>  f1(-4)=c/32-8*a

Ja, welchen Wert hat denn $f'(-4)$?

Das brauchst du für die letzte Gleichung!

>  Wenn ich die Eigenschaften aber in den CAS eingebe, kommt
> nicht der exakte Wert raus.

So ein kleines Gleichungssystem solltest du per Hand lösen!

>  Wie kann ich das denn mit dem Schnittpunkt an der y-Achse
> reinbringen?

Mit der 2-Punkte-Form lässt sich die Steigung der Tangente und damit der Wert $f'(-4)$ berechnen. Dieser konkrete Wert fehlt noch in deinen 3 Gleichungen (siehe weiter oben)

>  Danke schon mal für die Hilfe!

Gruß

schachuzipus


Bezug
                                
Bezug
Regression: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:00 Sa 01.09.2012
Autor: HansaAbi

Ja, den Wert für f1(-4) habe ich schon, das Ergebnis ist c/32-8*a. Das ist doch auch gleichzeitig m, also der Anstieg der Tangente, richtig?
Und um auf die Tangentengleichung zu kommen, muss ich jetzt den Punkt S(0/6) in y= (c/32-8*a)*x+n einsetzen?


Bezug
                                        
Bezug
Regression: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:10 Sa 01.09.2012
Autor: Valerie20

Hi!

Ich habe deine Mitteilung einmal als Frage markiert.
Stelle deine Rückfragen in Zunkunft als "Frage".
Wenn du nur die Mitteilung sendest kann es passieren, dass der Artikel nicht mehr beachtet wird.

Valerie

Bezug
                                        
Bezug
Regression: Antwort
Status: (Antwort) fertig Status 
Datum: 12:23 Sa 01.09.2012
Autor: schachuzipus

Hallo nochmal,


> Ja, den Wert für f1(-4) habe ich schon, das Ergebnis ist
> c/32-8*a. Das ist doch auch gleichzeitig m, also der
> Anstieg der Tangente, richtig?

Genau, das meinte ich auch mit "konkretem Wert"

>  Und um auf die Tangentengleichung zu kommen, muss ich
> jetzt den Punkt S(0/6) in y= (c/32-8*a)*x+n einsetzen?

Du weißt doch, dass die Tangente durch die zwei Punkte $P=(-4/0)$ und $Q=(0,6)$ (wenn ich das richtig erinnere) geht.

Daraus kannst du doch mit der 2-Punkteform die Steigung der Tangente (=Gerade durch P und Q) berechnen ...


Gruß
schachuzipus

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de