www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Regression mit dem TR
Regression mit dem TR < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regression mit dem TR: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:01 Do 21.12.2023
Autor: steve.joke

Aufgabe
Hallo,

es war eine Wertetabelle gegeben:

t in Monaten nach der Pflanzung
0 / 20 / 40 / 60 / 80 / 100

h(t) in Tonnen pro Monat
0,001 / 0,004 / 0,01 / 0,03 / 0,05 / 0,07

Man sollte die Gleichung einer logitschen Funktion angeben.


Ich wollte die Aufgabe mit der Regressionsfunktion des Taschenrechners lösen.

Deswegen hatte ich gedacht:

x=0 entspricht t=0
x=1 entspricht t=20
x=2 entspricht t=40
x=3 entspricht t=60
x=4 entspricht t=80
x=5 entspricht t=100

Wenn ich das so löse, komme ich auf eine Gleichung. Dann sollte man die Menge in Tonnen in 120 Monaten berechnen.

Ich habe dazu dann einfach x=6 in die Gleichung eingesetzt, d.h. h(6). Das Ergebnis war dann jedoch falsch.

Man kommt nur zum richtigen Ergebnis, wenn man vorher bei der Regression

x=0 entspricht t=0
x=20 entspricht t=20
x=40 entspricht t=40
x=60 entspricht t=60
x=80 entspricht t=80
x=100 entspricht t=100

ermittelt und dann h(120) berechnet.

Wieso führt der erste Weg nicht auch zum Ziel. Mir ist das irgendwie nicht ersichtlich. Habt ihr vielleicht einen Tipp?



        
Bezug
Regression mit dem TR: Antwort
Status: (Antwort) fertig Status 
Datum: 15:09 Do 21.12.2023
Autor: statler

Auch hallo!

> es war eine Wertetabelle gegeben:
>  
> t in Monaten nach der Pflanzung
>  0 / 20 / 40 / 60 / 80 / 100
>  
> h(t) in Tonnen pro Monat
>  0,001 / 0,004 / 0,01 / 0,03 / 0,05 / 0,07
>  
> Man sollte die Gleichung einer logitschen Funktion
> angeben.
>  Ich wollte die Aufgabe mit der Regressionsfunktion des
> Taschenrechners lösen.
>  
> Deswegen hatte ich gedacht:
>  
> x=0 entspricht t=0
>  x=1 entspricht t=20
>  x=3 entspricht t=40
>  x=4 entspricht t=60
>  x=5 entspricht t=80
>  x=6 entspricht t=100

Kann es sein, daß hier x = 2 verlorengegangen ist [biggrin]?

> Wenn ich das so löse, komme ich auf eine Gleichung. Dann
> sollte man die Menge in Tonnen in 120 Monaten berechnen.
>  
> Ich habe dazu dann einfach x=7 in die Gleichung eingesetzt,
> d.h. h(7). Das Ergebnis war dann jedoch falsch.

Und man hier dann h(6) berechnen muß?

> Man kommt nur zum richtigen Ergebnis, wenn man vorher bei
> der Regression
>
> x=0 entspricht t=0
>  x=20 entspricht t=20
>  x=40 entspricht t=40
>  x=60 entspricht t=60
>  x=80 entspricht t=80
>  x=100 entspricht t=100
>  
> ermittelt und dann h(120) berechnet.
>  
> Wieso führt der erste Weg nicht auch zum Ziel. Mir ist das
> irgendwie nicht ersichtlich. Habt ihr vielleicht einen
> Tipp?
>  

Gruß Dieter

Bezug
                
Bezug
Regression mit dem TR: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:52 Do 21.12.2023
Autor: steve.joke

Das war jetzt nur ein Tippfehler hier bei mir. Im.TR hatte ich es eingegeben.

Bezug
                        
Bezug
Regression mit dem TR: Unterschiedliche Abszissen
Status: (Antwort) fertig Status 
Datum: 10:04 Fr 22.12.2023
Autor: Infinit

Hallo steve.joke,
ich glaube, die Antwort auf Deine Frage ist recht einfach die, dass Du mit einem "skalierten", ein E-Techniker wie ich würde sagen abgetasteten System, gearbeitet hast, derjenige, mit dessen Lösung du jedoch Deine Lösung vergleichst, mit den vorgegebenen Werten. Kein Wunder, dass Du unterschiedliche Prognosen herauskommen, schließlich sind die Abszissenwerte andere.
Viele Grüße,
Infinit

Bezug
                                
Bezug
Regression mit dem TR: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:16 Fr 22.12.2023
Autor: steve.joke

Aber müsste man nicht mit beiden Wegen zum Ziel kommen können?

Bezug
                                        
Bezug
Regression mit dem TR: Leider nein in diesem Fall
Status: (Antwort) fertig Status 
Datum: 09:59 Sa 23.12.2023
Autor: Infinit

Hallo steve.joke,
in diesem Falle leider nein. Der Grund liegt darin, dass es eine logarithmische Regression ist und keine lineare. Bei einer linearen Regression berechnest Du Deine Interpolationswerte bzw. Extrapolationswerte, - das ist es ja bei Dir - nach einer Formel, die prinzipiell so aussieht:
[mm] y_i = a + b \cdot x_i [/mm]
a ist dabei der Achsenabschnitt und b die Steigung der Geraden. In solch einem Falle hättest Du recht.
Du suchst aber nach einer logarithmischen Regression und die hat ein  Aussehen wie
[mm] y_i = a \cdot \ln(x_i+b) + c [/mm]
mit entsprechenden Konstanten a, b und c. Ob Dein TR genau diese Formel nutzt oder eine leicht abgewandelte, weiß ich nicht, es ist aber auch prinzipiell egal. Was Du siehst, ist, dass die Abszissenwerte im Logarithmus der Funktion auftauchen und da der Logarithmus nunmal eine nichtlineare Funktion ist, ist es nicht egal, welche x-Werte Du da einsetzt.
Viele Grüße und schöne Feiertage,
Infinit


Bezug
                                                
Bezug
Regression mit dem TR: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:23 Sa 23.12.2023
Autor: steve.joke

Danke für die Erklärung

Ebenso schöne Feiertage

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de