www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Regular Curves
Regular Curves < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regular Curves: Aufgabe
Status: (Frage) überfällig Status 
Datum: 10:13 Di 24.04.2012
Autor: nureinmal

Aufgabe
Let [mm] $\gamma$ [/mm] be a regular curve in [mm] $\IR^3$ [/mm] parametrized by arc-length. If it is in a sphere with radius r and its tortion [mm] $\tau$ [/mm]  is never zero, show its curvature [mm] $\kappa$ [/mm] and torsion [mm] $\tau$ [/mm] satisfy the following equation.

[mm] $$(1/\kappa)^2 [/mm] + [mm] ((\kappa [/mm] ') / [mm] \kappa^2 \tau)^2 [/mm] = [mm] r^2$$ [/mm]

Hint: the position vector of the curve from the center of the sphere can be written as a linear combination of Frenet frame.

Hallo, ich versuche mich gerade an dieser Aufgabe und habe auch teils die Lösung davon, aber ich kann sie nicht so ganz nachvollziehen:

Also ich kann davon ausgehen, dass der Mittelpunkt der Sphäre im Ursprung von [mm] $\IR^3$ [/mm] liegt, da die verschobene Kurve abgesehen von einer Rigid Motion äquivalent sind.
So, und jetzt sind die Bilder der Parametrisierung [mm] $\gamma$ [/mm] auf dieser Sphäre. Also kann ich davon ausgehen, dass $$r(s) * t(s) = 0$$

Wobei $r(s)$ der Ortsvektor vom Punkt [mm] $\gamma(s)$ [/mm] ist und $s$ arc length und $t(s)$ der tangentialvektor am punkt [mm] $\gamma(s)$. [/mm]

Wie würde man nun weiter vorgehen?

        
Bezug
Regular Curves: was heißt hier "in a sphere" ?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:12 Di 24.04.2012
Autor: Al-Chwarizmi


> Let [mm]\gamma[/mm] be a regular curve in [mm]\IR^3[/mm] parametrized by
> arc-length. If it is in a sphere with radius r and its
> tortion [mm]\tau[/mm]  is never zero, show its curvature [mm]\kappa[/mm] and
> torsion [mm]\tau[/mm] satisfy the following equation.
>  
> [mm](1/\kappa)^2 + ((\kappa ') / \kappa^2 \tau)^2 = r^2[/mm]
>  
> Hint: the position vector of the curve from the center of
> the sphere can be written as a linear combination of Frenet
> frame.
>  Hallo, ich versuche mich gerade an dieser Aufgabe und habe
> auch teils die Lösung davon, aber ich kann sie nicht so
> ganz nachvollziehen:
>  
> Also ich kann davon ausgehen, dass der Mittelpunkt der
> Sphäre im Ursprung von [mm]\IR^3[/mm] liegt, da die verschobene
> Kurve abgesehen von einer Rigid Motion äquivalent sind.
>  So, und jetzt sind die Bilder der Parametrisierung
> [mm]$\gamma$[/mm] auf dieser Sphäre. Also kann ich davon ausgehen,
> dass [mm]r(s) * t(s) = 0[/mm]
>  
> Wobei [mm]r(s)[/mm] der Ortsvektor vom Punkt [mm]\gamma(s)[/mm] ist und [mm]s[/mm] arc
> length und [mm]t(s)[/mm] der tangentialvektor am punkt [mm]\gamma(s)[/mm].
>  
> Wie würde man nun weiter vorgehen?


Mit "if the curve is in a sphere with radius r"  ist hier wohl
gemeint, dass die Kurve in der Kugelfläche liegen soll -
und nicht etwa bloß innerhalb der entsprechenden (Voll-) Kugel,
oder ?

LG


Bezug
                
Bezug
Regular Curves: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:51 Di 24.04.2012
Autor: leduart

Hallo
in a sphere ist engl eindeutig auf einer Späre, sonst hiesse es in a ball, sphere ist immer eine dim niedriger als der Raum-
gruss leduart

Bezug
                        
Bezug
Regular Curves: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:27 Di 24.04.2012
Autor: Al-Chwarizmi


> Hallo
>  in a sphere ist engl eindeutig auf einer Späre, sonst
> hiesse es in a ball, sphere ist immer eine dim niedriger
> als der Raum-
>  gruss leduart


Consider, however:  

a sphere divides the three dimensional space into two
regions: the inside and the outside of the sphere.
So, "in the sphere" may at least be easily confused
with "inside the sphere" ...

Greetz !   Al


Bezug
        
Bezug
Regular Curves: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Do 26.04.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de