www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Reihe/Gleichung
Reihe/Gleichung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihe/Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:34 Sa 22.10.2011
Autor: Igor1

Hallo,

sei [mm] s_{n}:= \summe_{k=1}^{n}sinkx [/mm]

Es gilt für [mm] m\ge [/mm] n>0
[mm] |\summe_{k=n}^{m}\bruch{sinkx}{k}|= [/mm]
[mm] |\summe_{k=n}^{m}\bruch{s_{k}(x)-s_{k-1}(x)}{k}|= [/mm]
[mm] |\summe_{k=n}^{m}s_{k}(x)(\bruch{1}{k}-\bruch{1}{k+1})+\bruch{s_{m}(x)}{m+1}-\bruch{s_{n-1}(x)}{n}|. [/mm]

Mir ist nicht klar, warum die zweite Gleichung gilt.
Der Summand auf der rechten Seite sieht nicht trivial aus. ;)
Ich weiß nicht, wie ich diesen leicht vereinfachen kann.


Gruss
Igor



        
Bezug
Reihe/Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 Sa 22.10.2011
Autor: Fulla

Hallo Igor,

> Hallo,
>  
> sei [mm]s_{n}:= \summe_{k=1}^{n}sinkx[/mm]
>  
> Es gilt für [mm]m\ge[/mm] n>0
>  [mm]|\summe_{k=n}^{m}\bruch{sinkx}{k}|=[/mm]
>  [mm]|\summe_{k=n}^{m}\bruch{s_{k}(x)-s_{k-1}(x)}{k}|\red{=}[/mm]
>  
> [mm]|\summe_{k=n}^{m}s_{k}(x)(\bruch{1}{k}-\bruch{1}{k+1})+\bruch{s_{m}(x)}{m+1}-\bruch{s_{n-1}(x)}{n}|.[/mm]
>  
> Mir ist nicht klar, warum die zweite Gleichung gilt.
>  Der Summand auf der rechten Seite sieht nicht trivial aus.
> ;)
>  Ich weiß nicht, wie ich diesen leicht vereinfachen kann.

es geht also um das rote =?
Es gilt
[mm]\left|\sum_{k=n}^m\frac{s_k -s_{k-1}}{k}\right|=\left|\sum_{k=n}^m \frac{s_k}{k}-\sum_{k=n}^m \frac{s_{k-1}}{k}\right|[/mm]
jetzt wurde bei der zweiten Summe der Index verschoben, damit [mm]s_k[/mm] statt [mm]s_{k-1}[/mm] dasteht
[mm]=\left|\sum_{k=n}^m \frac{s_k}{k}-\sum_{k=n-1}^{m-1} \frac{s_{k}}{k+1}\right|[/mm]
jetzt passt man die Grenzen der zweiten Summe so an, dass man beide zusammenfassen kann. Dabei macht man aber einen Fehler, der durch die zwei zusätzlichen Terme ausgeglichen wird:
[mm]=\left|\sum_{k=n}^m \frac{s_k}{k}-\sum_{k=n}^{m} \frac{s_{k}}{k+1}+\frac{s_m}{m+1}-\frac{s_{n-1}}{n}\right|[/mm]
Beachte, dass die letzten beiden Terme nicht in der Summe stehen.
Fasse nun die beiden Summen zusammen und du hast deine Gleichung.


Lieben Gruß,
Fulla


Bezug
                
Bezug
Reihe/Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:29 Sa 22.10.2011
Autor: Igor1

Hallo Fulla,

vielen Dank für die gute Erklärung !


Gruss
Igor

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de