www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Reihe integrierbarer Funktion
Reihe integrierbarer Funktion < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihe integrierbarer Funktion: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:56 Di 23.11.2010
Autor: richardducat

Aufgabe
Zeigen Sie: Eine Reihe  [mm] \summe_{k=1}^{\infty}g_k [/mm] integrierbarer Funktionen auf [mm] \IR^n [/mm] mit [mm] \summe_{k=1}^{\infty}\integral{|g_k| dx}<\infty [/mm] konvertiert fast überall gegen eine integrierbare Funktion, und es gilt:
[mm] \integral{(\summe_{k=1}^{\infty}g_k )dx}=\summe_{k=1}^{\infty}\integral{g_k dx} [/mm]

hallo,

kann mir jemand bei dieser aufgabe helfen?

ich vestehe z.b. nicht was mit "konvertiert fast überall" gemeint ist.

vielen dank
richard

        
Bezug
Reihe integrierbarer Funktion: off topic
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:58 Di 23.11.2010
Autor: schachuzipus

[offtopic]

Amen!

;-)

Gruß

schachuzipus

Bezug
                
Bezug
Reihe integrierbarer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:12 Di 23.11.2010
Autor: richardducat

hallo schachuzipus,

was wäre denn deiner meinung nach das richtige topic?

gruß
richard

Bezug
                        
Bezug
Reihe integrierbarer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:16 Di 23.11.2010
Autor: fred97


> hallo schachuzipus,
>  
> was wäre denn deiner meinung nach das richtige topic?

Du hast geschrieben

              ""konvertiert fast überall" .

Daher das "Amen"  !!   Machts Klick ?  Wenn ja, runter vom Schlauch.

FRED

>  
> gruß
>  richard


Bezug
                        
Bezug
Reihe integrierbarer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:16 Di 23.11.2010
Autor: schachuzipus

Hi,

nur mein Kommentar ist off topic, deine Frage nicht (allerdings die Formulierung - daher ja auch der Kommentar)

Gruß

schachuzipus

Bezug
        
Bezug
Reihe integrierbarer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 Di 23.11.2010
Autor: fred97

fast überall:

            http://de.wikipedia.org/wiki/Ma%C3%9Ftheorie#fast_.C3.BCberall

FRED

Bezug
                
Bezug
Reihe integrierbarer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:18 Di 23.11.2010
Autor: richardducat

hallo fred,

dort wo die reihe nicht konvergiert gibt es eine nullmenge?

und muss das gezeigt werden? oder inwiefern spielt die nullmenge in dieser
aufgabe eine rolle?

gruß
richard

Bezug
                        
Bezug
Reihe integrierbarer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:24 Di 23.11.2010
Autor: fred97

> hallo fred,
>  
> dort wo die reihe nicht konvergiert gibt es eine
> nullmenge?

Quatsch !

Es gibt eine Nullmenge N mit: $ [mm] \summe_{k=1}^{\infty}g_k(x) [/mm] $  konvergiert für jedes x [mm] \notin [/mm]  N

>  
> und muss das gezeigt werden?


Das ist eine der Voraussetzungen !!



> oder inwiefern spielt die
> nullmenge in dieser
> aufgabe eine rolle?


Welche Vorlesung hörst Du ?

FRED

>  
> gruß
>  richard


Bezug
                                
Bezug
Reihe integrierbarer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Di 23.11.2010
Autor: richardducat

hallo fred,

tut mir leid wegen der "gruseligen" antwort.

aber die sache mit der nullmenge hab ich noch nicht verstanden

kannst du mir vielleicht kurz mit deinen worten erklären was unter einer nullmenge zu vestehen ist? das wäre großartig

höre analysis 3 für physiker

gruß
richard

Bezug
                                        
Bezug
Reihe integrierbarer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Di 23.11.2010
Autor: fred97


> hallo fred,
>  
> tut mir leid wegen der "gruseligen" antwort.
>  
> aber die sache mit der nullmenge hab ich noch nicht
> verstanden
>  
> kannst du mir vielleicht kurz mit deinen worten erklären
> was unter einer nullmenge zu vestehen ist? das wäre
> großartig

Ist Dir bekannt, was eine Borel- messbare Menge ist ?

Ist Dir bekannt, was eine Lebesgue- messbare Menge ist ?

FRED

>  
> höre analysis 3 für physiker
>  
> gruß
>  richard


Bezug
                                                
Bezug
Reihe integrierbarer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:09 Di 23.11.2010
Autor: richardducat

hallo fred,

hab ich schon gehört, aber nicht verinnerlicht.



richard

Bezug
                                                        
Bezug
Reihe integrierbarer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Di 23.11.2010
Autor: fred97


> hallo fred,
>  
> hab ich schon gehört, aber nicht verinnerlicht.

Bevor ich Deiner Bitte

        "kannst du mir vielleicht kurz mit deinen worten erklären was unter einer nullmenge zu vestehen ist?"

nachkomme, verinnerliche

FRED

>
>
>
> richard


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de