www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Reihen
Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihen: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:44 Mi 05.02.2014
Autor: Babybel73

Hallo zusammen

Kann mir jemand von euch bei folgender Reihe weiterhelfen?

[mm] \summe_{n=1}^{\infty} \bruch{sin(n)}{n!} [/mm]

Wie kann ich da untersuchen ob sie abs. konvergent, konvergent oder divergent ist?

Vielen Dank

        
Bezug
Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 Mi 05.02.2014
Autor: reverend

Hallo Babybel,

so ein Sinus irritiert meistens nur...

> Kann mir jemand von euch bei folgender Reihe weiterhelfen?
>
> [mm]\summe_{n=1}^{\infty} \bruch{sin(n)}{n!}[/mm]
>  
> Wie kann ich da untersuchen ob sie abs. konvergent,
> konvergent oder divergent ist?

Ich würde immer erstmal auf absolute Konvergenz untersuchen. Manchmal ist man dann ja schon fertig.

Generell gilt hier aber [mm] -1\le\sin{n}\le{1}, [/mm] also auch [mm] |\sin{n}|\le{1}. [/mm]

Das sollte doch schon weiterhelfen. ;-)

Ach so: Weißt Du, was [mm] \summe_{n=0}^{\infty}\bruch{1}{n!} [/mm] ist? Das würde natürlich auch helfen...

Grüße
reverend

Bezug
                
Bezug
Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:17 Mi 05.02.2014
Autor: Babybel73

Hallo reverend

Ah so... na dann kann ich ja:
[mm] \summe_{n=1}^{\infty} [/mm] | [mm] \bruch{sin(n)}{n!} [/mm] | = [mm] \summe_{n=1}^{\infty} \bruch{|sin(n)|}{n!} \le \summe_{n=1}^{\infty} \bruch{1}{n!} [/mm] = e
Also nach Majorantenkriterium absolut konvergent!
Muss ich jetzt noch [mm] \summe_{n=1}^{\infty} [/mm] auf [mm] \summe_{n=0}^{\infty} [/mm] anpassen? also das wäre ja dann einfach e-1, oder?



Bezug
                        
Bezug
Reihen: Fehler selber bemerkt
Status: (Antwort) fertig Status 
Datum: 21:20 Mi 05.02.2014
Autor: Loddar

Hallo Babybel!


> Ah so... na dann kann ich ja:
> [mm]\summe_{n=1}^{\infty}[/mm] | [mm]\bruch{sin(n)}{n!}[/mm] | = [mm]\summe_{n=1}^{\infty} \bruch{|sin(n)|}{n!} \le \summe_{n=1}^{\infty} \bruch{1}{n!}[/mm]

[ok]


> = e

Das stimmt nicht ganz, wie Du unten bereits selber festgestellt hast.


> Also nach Majorantenkriterium absolut konvergent!

[ok]


> Muss ich jetzt noch [mm]\summe_{n=1}^{\infty}[/mm] auf
> [mm]\summe_{n=0}^{\infty}[/mm] anpassen? also das wäre ja dann
> einfach e-1, oder?

[ok] Dann schreibe das auch oben.


Gruß
Loddar

Bezug
                                
Bezug
Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:40 Mi 05.02.2014
Autor: Babybel73

Hei, danke für eure Hilfe! Ihr seit super! :)

Bezug
                                        
Bezug
Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:09 Mi 05.02.2014
Autor: reverend


> Ihr seit super! :)  

Mönsch, "seid" mit D wie Domade, tu Tussel! ;-)

Übrigens hat Richie Recht, und Du auch, und Loddar erst, und überhaupt sind wir alle eine große Familie.

Hm, vielleicht war da doch was im Tee.

Grüße
rev

Bezug
        
Bezug
Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:00 Mi 05.02.2014
Autor: Richie1401

Hallo Babybel,

> Hallo zusammen
>
> Kann mir jemand von euch bei folgender Reihe weiterhelfen?
>
> [mm]\summe_{n=1}^{\infty} \bruch{sin(n)}{n!}[/mm]
>  
> Wie kann ich da untersuchen ob sie abs. konvergent,
> konvergent oder divergent ist?

Hier ist eben wichtig zu wissen, dass jede absolut konvergente Reihe auch konvergent ist.

Im übrigen interessiert der Wert der Reihe sicherlich gar nicht. Von daher ist die Korrektor, die du bei einem deiner Beiträge vorgenommen hast, im Grund irrelevant. Da reicht am Ende auch ein [mm] <\infty. [/mm]

Allgemein sollte man sich also noch merken, wie man den Sinus und Kosinus abschätzen kann. Solche Abschätzungen werden sehr häufig benutzt.

Schönen Abend!

>  
> Vielen Dank


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de