www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Reihen/Folgen
Reihen/Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihen/Folgen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:46 Mo 07.07.2014
Autor: Smuji

Aufgabe
Zeigen Sie für alle natürlichen Zahlen n: Summenzeichen [mm] \bruch{k}{2^{k}} [/mm] = [mm] \bruch{2^{n+1}-n-2}{2^{n}} [/mm]

also,
in erster linie habe ich überhaupt keine ahnung was der aufgabensteller da von mir will...soll ich links nun mehrere zahlen einsetzen und zeigen, dass rechts der wert genauso groß ist ? bestimmt nicht....denn er sagt ja, zeige für ALLE...


außerdem habe ich mal auf beiden seiten für die variabele, den gleichen wert eingesetzt und herausgefunden, dass es garnicht gleich ist ??!?


was genau muss ich da machen ?


gruß smuji

        
Bezug
Reihen/Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:33 Mo 07.07.2014
Autor: Richie1401

Hallo,

also wollen wir erstmal die Gleichung richtig notieren:

   [mm] \sum_{k=1}^n\frac{k}{2^k}=\frac{2^{n+1}-n-2}{2^n} [/mm]

So, nehmen wir mal n=1:

   LHS: [mm] \sum_{k=1}^1\frac{k}{2^k}=\frac{1}{2^1}=\frac{1}{2} [/mm]

   RHS: [mm] \frac{2^{n+1}-n-2}{2^n}=\frac{2^{1+1}-1-2}{2^1}=\frac{4-1-2}{2}=\frac{1}{2} [/mm]

Wir sehen also: für n=1 stimmt die Gleichung schon einmal.

Jetzt könntest du die Gleichung doch mal induktiv beweisen. Den Induktionsanfang habe ich bereits gemacht. Nun probier es mal mit Hilfe der Behauptung den Übergang [mm] n\to{n+1} [/mm] durchzuführen.



Wenn du mal etwas allgemeiner das ganze haben willst, dann versuche einmal diese an die geometrische Reihe angelehnte Formel zu beweisen:

   [mm] \sum_{k=0}^nk*q^k=\frac{nq^{n+2}-(n+1)q^{n+1}+q}{(q-1)^2} [/mm]



Liebe Grüße!

Bezug
                
Bezug
Reihen/Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:22 Di 08.07.2014
Autor: Smuji

vielen dank, aber ich habe keine ahnung wie ich sowas beweise.... ich schaue schon die ganze zeit in youtube nach videos, nur findei ch da nichts genaues...

also, es wird ja nicht sinn der aufgabe sein, nun jeden wert bis  unendlich dort zusetzen....also muss es ja eine allgemeine "art formel" geben....

das ist wahrscheinlich das, was du mit induktiv beweisen meinst....

also soll ich einfach für k --> k+1 einsetzen und für n --> n+1 ?

und dann nach irgendwas auflösen ?wenn ja, nach was ?


$ [mm] \sum_{k=1}^n\frac{k+1}{2^k+1}=\frac{2^{n+2}-n-1}{2^n+1} [/mm] $


so ?


gruß smuji


Bezug
                        
Bezug
Reihen/Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:29 Di 08.07.2014
Autor: MaslanyFanclub

Hallo,

mit "induktiv" ist diese grundlegende Beweismethode gemeint:
https://de.wikipedia.org/wiki/Vollst%C3%A4ndige_Induktion

Bezug
                        
Bezug
Reihen/Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:21 Di 08.07.2014
Autor: fred97


> vielen dank, aber ich habe keine ahnung wie ich sowas
> beweise.... ich schaue schon die ganze zeit in youtube nach
> videos, nur findei ch da nichts genaues...
>  
> also, es wird ja nicht sinn der aufgabe sein, nun jeden
> wert bis  unendlich dort zusetzen....also muss es ja eine
> allgemeine "art formel" geben....
>  
> das ist wahrscheinlich das, was du mit induktiv beweisen
> meinst....
>  
> also soll ich einfach für k --> k+1 einsetzen und für n
> --> n+1 ?
>  
> und dann nach irgendwas auflösen ?wenn ja, nach was ?
>  
>
> [mm]\sum_{k=1}^n\frac{k+1}{2^k+1}=\frac{2^{n+2}-n-1}{2^n+1}[/mm]
>  
>
> so ?

Nein !

   (*)    $ [mm] \sum_{k=1}^n\frac{k}{2^k}=\frac{2^{n+1}-n-2}{2^n} [/mm] $

Wir wollen zeigen, dass (*) für jedes n [mm] \in \IN [/mm] richtig ist.

Das macht man in folgenden Schritten:

1.  Zeige, dass (*) für n=1 richtig ist.

2. Nimm an, (*) sei für ein festes n [mm] \in \IN [/mm] richtig. Zeige damit, dass (*) auch für n+1 richtig ist, dass also gilt

$ [mm] \sum_{k=1}^{n+1}\frac{k}{2^k}=\frac{2^{n+2}-(n+1)-2}{2^{n+1}} [/mm] $


FRED

>  
>
> gruß smuji
>  


Bezug
                        
Bezug
Reihen/Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:41 Di 08.07.2014
Autor: Richie1401

Hallo,

schau dir ruhig mal folgendes an:

http://www.emath.de/Referate/induktion-aufgaben-loesungen.pdf

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de