www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Reihen konvergiert, Reihenwert
Reihen konvergiert, Reihenwert < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihen konvergiert, Reihenwert: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:36 Mi 11.01.2006
Autor: Doreen

Aufgabe
Entscheiden Sie, ob die folgenden Reihen konvergieren, und berechnen Sie gegebenenfalls den Reihenwert.

[mm] \summe_{k=1}^{\infty} [/mm] ( [mm] \wurzel{k} [/mm] -  [mm] \wurzel{k-1}) [/mm]

Hallo und Guten Abend an alle,

natürlich habe ich noch mehr Aufgaben (oben in MZ geschrieben) aber ich will erstmal nur den Weg für eine Wissen, damit ich dann das auf die anderen anwenden kann... Also, wäre es toll, wenn mir jemand dabei helfen könnte... Ich hätte auch schon etwas anzubieten.

[mm] \summe_{k=1}^{\infty} [/mm] ( [mm] \wurzel{k} [/mm] -  [mm] \wurzel{k-1}) [/mm]

das schreibt man ja an stelle von Partialsummenfolge...

und konvergiert eine Partialsummenfolge, so wird der Grenzwert als Reihenwert (Reihe) bezeichnet...

[mm] \limes_{n\rightarrow\infty} S_{n} [/mm] =  [mm] \limes_{n\rightarrow\infty} \summe_{k=1}^{n} [/mm] = [mm] \summe_{k=1}^{\infty} [/mm] ( [mm] \wurzel{k} [/mm] -  [mm] \wurzel{k-1}) [/mm]

Man kann leicht mit Induktion zeigen, dass

[mm] \summe_{k=1}^{n} [/mm] ( [mm] \wurzel{k} [/mm] -  [mm] \wurzel{k-1}) [/mm] = 1 + ( [mm] \wurzel{2} [/mm] - 1) + (  [mm] \wurzel{3} [/mm] -  [mm] \wurzel{2} [/mm] ) + (2-  [mm] \wurzel{3} [/mm] ) +.....
+  ( [mm] \wurzel{n} [/mm] -  [mm] \wurzel{n-1}) [/mm] =  [mm] \wurzel{n} [/mm]

Es folgt, dass die Reihe [mm] \summe_{k=1}^{\infty} [/mm] ( [mm] \wurzel{k} [/mm] -  [mm] \wurzel{k-1}) [/mm]
konvergiert mit

[mm] \summe_{k=1}^{\infty} [/mm] ( [mm] \wurzel{k} [/mm] -  [mm] \wurzel{k-1}) [/mm] = [mm] \limes_{n\rightarrow\infty} \summe_{k=1}^{\infty} [/mm] ( [mm] \wurzel{k} [/mm] -  [mm] \wurzel{k-1}) [/mm] =  [mm] \limes_{n\rightarrow\infty} \wurzel{n} [/mm]


Meiner Meinung nach, fehlt da jetzt noch was... weil wenn n gegen unendlich geht... dann konvergiert meine Reihe gegen unendlich und dann
habe ich gar keinen Grenzwert... oder übersehe ich da was?

Für Hilfe und Antwort wäre ich sehr dankbar.

Vielen Dank
Doreen

Diese Frage habe ich in keinen anderem Forum gestellt.

        
Bezug
Reihen konvergiert, Reihenwert: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 Mi 11.01.2006
Autor: mathiash

Hallo Doreen,

ich wuerd sagen: Ja ! Du hast recht, die Reihe divergiert, und Dein Argument sollte auch stimmen.

Viele Gruesse,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de