www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Reihenentwicklung
Reihenentwicklung < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihenentwicklung: Lösung und Idee
Status: (Frage) beantwortet Status 
Datum: 16:02 Sa 08.04.2006
Autor: WoKi

Hallo zusammen,

Thema: Reihenentwicklung und Summe von Reihen

* Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Jedes Glied der Reihe hat einen konstanten Abstand von 2/n.

Für n ungerade ergibt sich:
n=3  :              3/3 + 1/3
n=5  :        5/5 + 3/5 + 1/5
n=7  :  7/7 + 5/7 + 3/7 + 1/7

Für n gerade erhält man:
n=4  :              4/4 + 2/4
n=6  :        6/6 + 4/6 + 2/6
n=8  :  8/8 + 6/8 + 4/8 + 2/8

Allgemein erhält man für die Summe der Reihen:

n ungerade: s(n) = [mm] [(n+1)/2]^2/n [/mm]
n   gerade: s(n) = (n/2+1)/2


Folgende Frage:
Wie sieht die Reihe bzw. die Summe der Reihe für n aus, wenn der
konstante Abstand 3/n oder ganz allgemein a/n ist?

z.B.: Die Werte für eine Reihe mit 3/n

Für n ungerade ergibt sich:
n=5  :              5/5 + 2/5
n=7  :        7/7 + 4/7 + 1/7
n=9  :        9/9 + 6/9 + 3/9

Für n gerade erhält man:
n=4  :                4/4  + 1/4
n=6  :                6/6  + 3/6
n=8  :          8/8 + 5/8  + 2/8
n=10 : 10/10 + 7/10 + 4/10 + 1/10


Ich rechne seit einigen Tagen an dieser Reihe, aber irgendwie will mir
das nicht gelingen die Summenformel dafür abzuleiten.

Hat vielleicht jemand einen Lösungsweg oder eventuell bereits die Lösung, dann
wäre ich hoch erfreut und brauch mir nicht wieder Nächte um die Ohren schlagen.

Danke im Voraus

Mfg.
WoKi


        
Bezug
Reihenentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:41 Sa 08.04.2006
Autor: leduart

Hallo Woki
Das n im Nenner kannst du doch erst mal einfach weglassen! dann hast du ne arithmetische Reihe, und musst nur abzählen wieviel glieder sie hat, uns was das erst und letze ist
a) anzahl der Summanden:n/3  ersts Glied 3 letztes n also n/6*(n+3)
b) n mod3=1 1.Glied 1 letztes n, (n+2)/3 Glieder
c) nmod3=2  1. Glied 2, letztes n; (n+1)/3 glieder (Summanden)
Gruss leduart

Bezug
                
Bezug
Reihenentwicklung: Lösung
Status: (Frage) beantwortet Status 
Datum: 13:34 So 09.04.2006
Autor: WoKi

Hallo,

@Leduart:
Erstmal danke für die Antwort. Das ist schon richtig.
Meine Lösung der Reihe mit 2/n hat aber nur zwei Reihen-Summen
für ungerade und gerade n's. Bei deinem Lösung-Vorschlag müsste
ich drei Gleichungen aufstellen.
Ich möchte aber nur für gerade und ungerade n's eine Gleichung.


Wie man für 2/n sehen kann, brauche ich nur zwei Gleichungen für
die Berechnung der Summen. Egal welches gerade oder ungerade n
ich benutze, die Gleichungen sind für alle n erfüllt.

Ich suche also:

n     gerade für 3/n : s(n) =  .....
n ungerade für 3/n : s(n) =  .....

Danke an Alle im Voraus

Gruss
WoKi

Bezug
                        
Bezug
Reihenentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 Di 11.04.2006
Autor: leduart

Hallo Woki
> Hallo,
>  
> @Leduart:
> Erstmal danke für die Antwort. Das ist schon richtig.
> Meine Lösung der Reihe mit 2/n hat aber nur zwei
> Reihen-Summen
> für ungerade und gerade n's. Bei deinem Lösung-Vorschlag
> müsste
> ich drei Gleichungen aufstellen.
>  Ich möchte aber nur für gerade und ungerade n's eine
> Gleichung.

Das ist ja schön, aber die Anzahl der addierten Glieder bzw. das letzte Glied hängt doch von der Teilbarkeit durch 3 ab. (Dein n im Nenner spielt überhaupt keine Rolle, weil du es ja ausklammern kannst)
deshalb brauchst du, wenn du in 2-er Schritten gehst auch nur grad und ungrad, du könntest statt grad auch schreiben n mod2=0 und statt ungerade n mod2=1 was anderes gibt es bei 2 nicht.
Wenn du weiter gehst, brachst du immer mehr fallunterscheidungen, oder du musst das mod3 in deine Summenformel mitreinschreiben, dann kriegst du eine einzige!  

>
> Wie man für 2/n sehen kann, brauche ich nur zwei
> Gleichungen für
>  die Berechnung der Summen. Egal welches gerade oder
> ungerade n
>  ich benutze, die Gleichungen sind für alle n erfüllt.
>  
> Ich suche also:
>  
> n     gerade für 3/n : s(n) =  .....
>  n ungerade für 3/n : s(n) =  .....

Was für 2 geht, muss nicht auch für 3 gehen! wenn die Differenz 1/n ist brauchst du doch auch nur EINE Formel!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de