www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Reihenentwicklung
Reihenentwicklung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihenentwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:20 Fr 10.07.2009
Autor: royalbuds

Aufgabe
Bestimmen Sie den Wert des Integrals

[mm] $\integral_{0}^{1} sin(x^2) [/mm] dx$

naeherungsweise mit Hilfe der Reihenentwickling mit absolutem Fehler [mm] $0.5*10^{-2}. [/mm]

Hi,

leider fehlt mir hier ein wenig der Ansatz. Ich soll ja wohl irgendwas mit der Taylorentwicklung machen. Muss ich aber zunaechst integrieren und dann die Funktion in der Taylorreihe verwenden, oder kann ich das schon so benutzen. Und was machen ich mit den Grenzen? Was ist denn mein Entwicklungspunkt hier?

Gruss

        
Bezug
Reihenentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:44 Fr 10.07.2009
Autor: Al-Chwarizmi


> Bestimmen Sie den Wert des Integrals
>
> [mm]\integral_{0}^{1} sin(x^2) dx[/mm]
>  
> naeherungsweise mit Hilfe der Reihenentwicklung mit
> absolutem Fehler [mm]$0.5*10^{-2}.[/mm]

>  Hi,
>  
> leider fehlt mir hier ein wenig der Ansatz. Ich soll ja
> wohl irgendwas mit der Taylorentwicklung machen. Muss ich
> aber zunaechst integrieren und dann die Funktion in der
> Taylorreihe verwenden, oder kann ich das schon so benutzen.
> Und was machen ich mit den Grenzen? Was ist denn mein
> Entwicklungspunkt hier?
>  
> Gruss

Hallo royalbuds,

man nimmt hier natürlich die "gewöhnliche"
Sinusreihe mit Entwicklungspunkt 0 und
setzt anstelle von x  [mm] x^2 [/mm] ein. Dann integriert
man die entstandene Reihe gliedweise und
überlegt sich, wie viele Glieder der neuen
Reihe (mit alternierenden Vorzeichen und mit
immer kleiner werdenden Absolutbeträgen
der Glieder !) man berücksichtigen muss,
um die geforderte Genauigkeit zu erzielen.

LG

Bezug
                
Bezug
Reihenentwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:35 Fr 10.07.2009
Autor: royalbuds

Hi,

ok, die Entwicklung habe ich wie folgt gemacht (nur mal das Ergebnis):

[mm] $\frac{1}{3}x^3 \rvert_0^1 [/mm] - [mm] \frac{1}{3!}*\frac{1}{7}x^7\rvert_0^1+ \frac{1}{5!}*\frac{1}{11}x^{11}\rvert_0^1 [/mm] - [mm] \frac{1}{7!}*\frac{1}{15}x^{15}\rvert_0^1 [/mm] ...$

Ok, jetzt gehts ja darum abzuschaetzen wieviele Gleider ich brauche. Muesste denn jetzt ein Ausdruck dieser Form [mm] $|R_n| [/mm] = [mm] |f(x)-T_n| \le \frac{1}{(n+1)!*2n}x^{2n+1} \rvert_0^1 \le 05.*10^{-2}$ [/mm] existieren? Aber wie rechne ich das denn aus ohne den Eigentlichen Wert $f(x)$, was ja das eigentliche Integral wieder ist, zu kennen?

Bezug
                        
Bezug
Reihenentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:09 Fr 10.07.2009
Autor: Al-Chwarizmi


> Hi,
>  
> ok, die Entwicklung habe ich wie folgt gemacht (nur mal das
> Ergebnis):
>  
>   [mm]\frac{1}{3}x^3 \rvert_0^1 - \frac{1}{3!}*\frac{1}{7}x^7\rvert_0^1+ \frac{1}{5!}*\frac{1}{11}x^{11}\rvert_0^1 - \frac{1}{7!}*\frac{1}{15}x^{15}\rvert_0^1 ...[/mm]
>  
> Ok, jetzt gehts ja darum abzuschaetzen wieviele Gleider ich
> brauche. Muesste denn jetzt ein Ausdruck dieser Form

>     [mm]|R_n| = |f(x)-T_n| \le \frac{1}{(n+1)!*2n}x^{2n+1} \rvert_0^1 \le 05.*10^{-2}[/mm]

> existieren? Aber wie rechne ich das denn aus ohne den
> Eigentlichen Wert [mm]f(x)[/mm], was ja das eigentliche Integral
> wieder ist, zu kennen?


Hallo,

ich würde hier gar nicht die Restgliedformel
bemühen, weil eine "Leibnizsche Reihe"
vorliegt (Absolutbeträge (rasch!) abnehmend,
Vorzeichen abwechselnd). Bei einer solchen
Reihe ist der Fehler stets kleiner als das
letzte noch berücksichtigte Glied.

Für die Rechnung mit Restgliedformel
bräuchtest du die höheren Ableitungen der
(unbekannten) Stammfunktion $\ [mm] f(x)=\integral sin(x^2)\,dx$ [/mm] .
Das ist aber kein Problem, denn du hast ja
[mm] f'(x)=sin(x^2) [/mm] .

LG    Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de