www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Reihengleichung beweisen
Reihengleichung beweisen < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihengleichung beweisen: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:54 Do 08.11.2007
Autor: MaRaQ

Aufgabe
Beweisen Sie: Für jede natürliche Zahl n gilt

[mm] \summe_{i=1}^{n} i^{3} [/mm] = [mm] (\summe_{j=1}^{n} j)^{2} [/mm]

So weit - in der Theorie eigentlich ganz einfach, hakts bei mir bei diesem Induktionsbeweis doch ordentlich.

So weit meine Überlegungen:

Induktions-Anfang:

n= 1: [mm] 1^{3} [/mm] = 1 = [mm] 1^{2} \checkmark [/mm]

Induktions-Schritt:

Für ein beliebiges, jedoch festes n [mm] \in \IN [/mm] gelte bereits unsere Induktionsvoraussetzung
[mm] \summe_{i=1}^{n} i^{3} [/mm] = [mm] (\summe_{j=1}^{n} j)^{2}. [/mm]


[mm] \summe_{i=1}^{n+1} i^{3} [/mm] = [mm] \summe_{i=1}^{n} i^{3} [/mm] + (n + [mm] 1)^{3} \underbrace{=}_{Ind.Vor.} (\summe_{j=1}^{n} j)^{2} [/mm] + (n + [mm] 1)^{3} [/mm] = ...?

Dies müsste man ja jetzt dergestalt umformen, dass man es auf die Ausgangsformel rückführen könnte, sprich auf eine Gleichung [mm] (\summe_{j=1}^{n+1} j)^{2} [/mm] oder anders geschrieben [mm] (\summe_{j=1}^{n} [/mm] j + [mm] (n+1))^{2}. [/mm]

Bloß ist mir hier noch kein Weg eingefallen, das Quadrat zu vereinfachen, zu umgehen, oder sonstwie eine Umformung zu erhalten, mit der ich irgendwie weiter käme. Hat jemand eine Idee?
Oder zumindest nen Akkuschrauber um das Brett vor meinem Kopf zu lockern? :)

        
Bezug
Reihengleichung beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:27 Do 08.11.2007
Autor: rainerS

Hallo!

> Dies müsste man ja jetzt dergestalt umformen, dass man es
> auf die Ausgangsformel rückführen könnte, sprich auf eine
> Gleichung [mm](\summe_{j=1}^{n+1} j)^{2}[/mm] oder anders
> geschrieben [mm](\summe_{j=1}^{n}[/mm] j + [mm](n+1))^{2}.[/mm]
>  
> Bloß ist mir hier noch kein Weg eingefallen, das Quadrat zu
> vereinfachen, zu umgehen, oder sonstwie eine Umformung zu
> erhalten, mit der ich irgendwie weiter käme. Hat jemand
> eine Idee?

Nimm doch die binomische Formel:

[mm]\left(\summe_{j=1}^{n} j + (n+1)\right)^{2} = \left(\summe_{j=1}^{n} j \right)^2 + 2\left(\summe_{j=1}^{n} j \right)(n+1) + (n+1)^2[/mm].

Viele Grüße
   Rainer

Bezug
                
Bezug
Reihengleichung beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:42 Do 08.11.2007
Autor: MaRaQ

Ach, tausend Dank. Manchmal sind es eben die kleinen Dinge im Leben. Jetzt ist alles klar. :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de